Browse > Article
http://dx.doi.org/10.14478/ace.2018.1044

Synthesis of Amino Acid-based Anionic Surfactants from Coconut Oil and Characterization of Interfacial Properties  

Yea, DaNan (Department of Chemical and Biochemical Engineering, Dongguk University)
Jo, SeonHui (Department of Chemical and Biochemical Engineering, Dongguk University)
Lim, JongChoo (Department of Chemical and Biochemical Engineering, Dongguk University)
Publication Information
Applied Chemistry for Engineering / v.29, no.5, 2018 , pp. 524-532 More about this Journal
Abstract
In this study, two types of amino acids-based anionic biosurfactants such as potassium cocoyl glutamate (CTK) and sodium cocoyl glutamate (CTN) were synthesized from coconut oils and the structure elucidation of CTK and CTN was carried out by using FT-IR, $^1H-NMR$ and $^{13}C-NMR$ spectrophotometries. Measurements of interfacial properties such as static and dynamic surface tensions and emulsification activity showed that both CTK and CTN were surface-active and effective in lowering the interfacial free energy. In particular, the CTK surfactant was found to be more efficient in reducing the interfacial free energy since the larger number of CTK molecules was preferentially adsorbed at the air-water interface due to the higher hydrophobicity and larger mobility of CTK than those of using CTN, indicating possible uses in cosmetics and household products formulation.
Keywords
Amino Acid Based Anionic Biosurfactant; Eco-Friendly; Coconut Oil; Interfacial Property;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. C. Lim, E. K. Kang, J. M. Park, H. C. Kang, and B. M. Lee, Syntheses and surface active properties of cationic surfactants having multi ammonium and hydroxyl groups, J. Ind. Eng. Chem., 18, 1406-1411 (2012).   DOI
2 J. C. Lim, J. M. Park, C. J. Park, and B. M. Lee, Synthesis and surface active properties of a gemini-type surfactant linked by a quaternary ammonium group, Colloid Polym. Sci., 291, 855-866 (2013).   DOI
3 S. M. Lee, J. Y. Lee, H. P. Yu, and J. C. Lim, Synthesis of environment friendly nonionic surfactants from sugar base and characterization of interfacial properties for detergent application, J. Ind. Eng. Chem., 38, 157-166 (2016).   DOI
4 S. M. Lee, J. Y. Lee, H. P. Yu, and J. C. Lim, Synthesis of environment friendly biosurfactants and characterization of interfacial properties for cosmetic and household products formulations, Colloid Surf. A, 536, 224-233 (2018).   DOI
5 X. Liu, Y. Zhao, Q. Li, T. Jiao, and J. Niu, Surface and interfacial tension of nonylphenol polyethylene oxides sulfonate, J. Mol. Liq., 216, 185-191 (2016).   DOI
6 L. Zhi, Q. Li, Y. Li, and Y. Song, Adsorption and aggregation properties of novel star-shaped gluconamide-type cationic surfactants in aqueous solution, Colloid Polym. Sci., 292, 1041-1050 (2014).   DOI
7 H. Changa, Y. Wanga, Y. Cuia, G. Lib, B. Zhanga, X. Zhaoc, and W. Weia, Equilibrium and dynamic surface tension properties of Gemini quaternary ammonium salt surfactants with hydroxyl, Colloids Surf. A, 500, 230-238 (2016).   DOI
8 J. C. Lim, S. Lee, B. J. Kim, J. G. Lee, and K. Y. Choi, Synthesis and characterization of interfacial properties of glycerol surfactant, Appl. Chem. Eng., 22, 376-383 (2011).
9 M. R. Infante, A. Pinazo, and J. Seguer, Non-conventional surfactants from amino acids and glycolipids: Structure, preparation and properties, Colloids Surf. A, 123-124, 49-70 (1997).   DOI
10 M. Gerova, F. Rodrigues, J.-F. Lamere, A. Dobrev, and S. Fery-Forgues, Self-assembly properties of some chiral N-palmitoyl amino acid surfactants in aqueous solution, J. Colloids Interface Sci., 319, 526-533 (2008).   DOI
11 I. Anastasios, T. Mitsionis, and C. Vaimakis, Estimation of AOT and SDS CMC in a methanol using conductometry, viscometry and pyrene fluorescence spectroscopy methods, Chem. Phys. Lett., 547, 110-113 (2012).   DOI
12 J. Oshitani, S. Takashina, M. Yoshida, and K. Gotoh, Difference in screening effect of alkali metal counterions on H-AOT-based W/O microemulsion formation, Langmuir, 26, 2274-2278 (2010).   DOI
13 M. Camp and K. Durham, The foaming of sodium laurate solutions-Factors influencing foam stability, J. Phys. Chem., 59, 993-997 (1955).   DOI
14 S. O. Oh and D. O. Shah, Effect of counterions on the interfacial tension and emulsion droplet size in the oil/water/dodecyl sulfate, J. Phys. Chem., 97, 284-286 (1993).   DOI
15 S. Pandey, R. P. Bagwe, and D. O. Shah, Effect of counterions on surface and foaming properties of dodecyl sulfate, J. Colloid Interface Sci., 267, 160-166 (2003).   DOI
16 P. Mukerjee, The nature of the association equilibria and hydrophobic bonding in aqueous solutions of association colloids, Adv. Colloid Interface Sci., 1, 241-275 (1967).
17 M. J. Rosen, Surfactants and Interfacial Phenomena, Wiley, New York, USA (1978).
18 J. N. Israelachvilli, Intermolecular and Surface Force, Academic Press, Ch.4, New York, USA (1992).
19 H. Yokota, K. Sagawa, C. Eguchi, and M. Takehara, New amphoteric surfactants derived from lysine. I. Preparation and properties of N-acyl lysine, J. Am. Oil Chem. Soc., 62, 1716-1719 (1985).   DOI
20 A. Kundu, S. Dasmandal, T. Majumdar, and A. Mahapatra, Effect of anionic biocompatible amino acid surfactant and sodium dodecyl sulfate on the rate of alkaline hydrolysis of tris(2,2-bipyridine) iron(II) complex: A comparative study, Colloids Surf. A, 419, 216-222 (2013).   DOI
21 G. Baschang, A. Hartmann, and O. Wacker, Lipopeptides having antitumor activity. US Patent 4,666,886 A (1987).
22 D. B. Barun, Developments with lipoaminoacids and their salts, Cosmet. Toiletries, 104, 92-94 (1989).
23 C. M. C. Faustino, A. R. T. Calado, and L. Garcia-Rio, Interactions between $\beta$-cyclodextrin and an amino acid based anionic gemini surfactant derived from cysteine, J. Colloids Interface. Sci., 367, 286-292 (2012).   DOI
24 M. R. Infante, A. Pinazo, and J. Seguer, Non-conventional surfactants from amino acids and glycolipids: structure, preparation and properties, Colloids Surf. A, 123-4, 49-70 (1997).   DOI
25 M. C. Moran, A. Pinazo, L. Perez, P. Clapes, M. Angelet, M. T. Garcia, M. P. Vinardell, and M. R. Infante, "Green" amino acid-based surfactants, Green Chem., 114, 233-240 (2004).
26 T. Y. Kim, S. C. Kim, S. J. Lee, J. H. Lee, and K. D. Nam, Studies on the surfactants of the n-acyl amino acid (part 8) (cmc and emulsion stability of n-acyl amino acid type anionic surfactant), J. Korean Ind. Eng. Chem., 6, 785-794 (1995).
27 D. S. Keler and P. Luner, Surface energetics of calcium carbonates using inverse gas chromatography, Colloids Surf., 161, 401-415 (2000).   DOI
28 S. Vijayakumar and V. Saravanan, Biosurfactants-types, sources and applications. research, Res. J. Microbiol., 10, 181-192 (2015).   DOI
29 I. M. Banat, R. S. Makkar, and S. S. Cameotra, Potential commercial applications of microbial surfactants, Appl. Microbiol. Biotechnol., 53, 495-508 (2000).   DOI
30 Z. N. Patel and N. Saraswathy, Biosurfactant: an environment friendly substitute to surfactant, World J. Pharm. Res., 3, 1968-1977 (2014).
31 K. Holmberg, Natural surfactants, Curr. Opin. Colloid Interface Sci., 6, 148-159 (2001).   DOI
32 Q. Q. Zhang, B. X. Cai, W. J. Xu, H. Z. Gang, J. F. Liu, S. Z. Yang, and B. Z. Mu, Novel zwitterionic surfactant derived from castor oil and its performance evaluation for oil recovery, Colloids Surf. A, 483, 87-95 (2015).   DOI
33 Y. K. Yoon and K. S. Choi, Studies on physical behavior of alkyl polyglucosides (I) - Interfacial activities and detergency, J. Korean Ind. Eng. Chem., 5, 451-456 (1994).
34 T. Suyama, T. Toyoda, and S. Kanao, Aliphatische acylaminosauren. n-acyl-aminosauren. II, J. Pharm. Soc. Jpn., 86, 967-972 (1966).   DOI
35 E. Haba, M. J. Espuny, M. Busquets, and A. Manresa, Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils, J. Appl Microbiol., 88, 379-387 (2000).   DOI
36 L. Perez, A. Pinazo, R. Pons, and M. Infante, Gemini surfactants from natural amino acids, Adv. Colloid Interface Sci., 205, 134-155 (2014).   DOI