Browse > Article
http://dx.doi.org/10.14478/ace.2018.1085

The Developing Trend in Bioresorbable Stent for Treatment of Coronary Artery Disease  

Jeong, Gyeong-Won (Department of Polymer Science and Engineering, Sunchon National University)
Kim, Tae-Hoon (CGbio Co.Ltd)
Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University)
Park, Jun-Kyu (CGbio Co.Ltd)
Publication Information
Applied Chemistry for Engineering / v.29, no.5, 2018 , pp. 497-502 More about this Journal
Abstract
The coronary artery disease (CAD) is rapidly increasing such as angina pectoris and atherosclerosis. The CAD is induce by cholesterol and calcium like plaque absortion to artery wall. The percutaneouss coronary intervention is non-invasive treatment that narrowed-artery is expand by using balloon catheter and bare metallic stent. The metallic stents have been effective in reducing the dead by coronary artery disease, but the permanent presence of the metallic stent has been associated with persistent inflammation, and incidence of late thrombosis. Therefore, development bioresorbable vascular scaffold (BRS) is rapidly increasing for treatment of long-term complications and arterial restenosis by permanentmetal prosthesis such as stent. The review discusses the BRS trend for successfully development.
Keywords
coronary stent; coroanry artery disease; bioresorbable stent; intervention;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Seth, Y. Onuma, R. Costa, P. Chandra, V. K. Bahl, and C. N. Manjunath, First-in-human evaluation of a novel poly(L-lactide) based sirolimus-eluting bioresrobable vascular scaffold for the treatment of de novo native coronary artery lesions: meRes-1 trial. Eurointervention, 13, 415-423 (2017).   DOI
2 Y. Wu, L. Shen, Q. Wang, L. Ge, J. Xie, and X. Hu, Comparison of acute recoil between bioabsorbable poly(L-lactic acid) XINSORB stent and metallic stent in porcine model, J. Biomed. Biotechnol., 2012, 1-8 (2012).
3 Y. Zhang, C. V. Bourantas, V. Farooq, T. Muramastsu, R. Diletti, Y. Onuma, H. M. Garcia, and P. W. Serruys, Bioresorbable scaffolds in the treatment of coronary artery disease, Med. Devices (Auckl.), 6, 37-48 (2013).
4 C. Rapetto and M. Leoncini, Margmaris: A new generation metallic sirolimus-eluting fully bioresorbable scaffold: present status and futrue perspectives, J. Thorac. Dis., 9, S903-S913 (2017).   DOI
5 S. McMahon, N. Bertolo, E. D. O'Cearbhaill, J. Salber, L. Pierucci, P. Duffy, T. Durig, V. Bi, and W. Wang, Bio-resorbable polymer stents: a review of material progress and prospects, Prog. Polym. Sci., 83, 79-96 (2018).   DOI
6 A. Abizaid, D. Carrie, N. Frey, M. Lutz, J. Weber-Albers, and D. Dudek, 6-Month clinical and angiographic outcomes of a novel radio radiopaque sirolimus-eluting bioresorbable vascualr scaffold: the FANTOM II study, JACC Cadiovac. Interv., 10, 1832-1838 (2017).   DOI
7 W. Schmidt, P. Behrens, C. Brandt-Wunderlich, S. Siewert, N. Grabow, and K. P. Schmitz, In vitro performance investigation of bioresorbable scaffolds-Standard test for vascular stents and beyond, Cardiovasc. Revasc. Med., 17, 375-383 (2016).   DOI
8 C. Campos, Y. Zhanh, C. Boutantas, T. Muramatsu, H. Garcia, P. Lemos, Y. Onuma, and P. W. Serruys, Bioresorbable vascular scaffolds in the clinical setting. J. Interv. Cardiol., 5, 639-646 (2013).   DOI
9 A. Abizaid, First report on the pivotal DESolve Nx trial: 6-month clinical and multi-modality imaging results, presented in EuroPCR 2013, May 21, Paris, France (2013).
10 B. D. Gogas, Bioresorbable scaffolds for percutaneous coronary interventions, Glob. Cardiol. Sci. Pract., 40, 409-427 (2014).
11 T. P. Vahl, P. Gasior, C. A. Gongora, K. Ramzipoor, C. Lee, and Y. Cheong, Four-year polymer biocompatiblity and vascular scaffold: An OCT study in healthy procine coronary arteries, Eurointervention, 12, 1510-1518 (2016).   DOI
12 A. S. Rao, M. S. Makaroun, L. K. Marone, J. S. Cho, R. Rhee, and R. A. Chaer, Long-term otucomes of internal carotid artery dissection, Stroke, 40, 499-504 (2009).   DOI
13 E. Tenekecioglu, P. W. Serruys, Y. Onuma, R. Costa, D. Chamie, Y. Sotomi, T. B. Yu, A. Abizaid, H. B. Liew, and T. Santoso, Randomized comparsion of Absorb bioresorbable vascular scaffold and Mirage microfiber sirolimus-eluting scaffold using multimodality imaging, JACC Cadiovasc. Interv., 10(11), 1115-1130 (2017).   DOI
14 M. C. Chen, Y. Chang, C. T. Liu, W. Y. Lai, S. F. Peng, Y. W. Hung, H. W. Tasi, and H. Sung, The characteristics and in vivo suppression of neointimal formation with sirolimus-eluting polymeric stents, Biomaterials, 30, 79-88 (2009).   DOI
15 S. A. Park, S. J. Lee, K. S. Lim, I. H. Bae, J. H. Lee, W. D. Kim, M. H. Jeong, and J. K. Park, In vivo evaluation and characterization of a bio-absorbable drug-coated stent fabricated using a 3D-printing system, Mater. Lett., 141, 355-358 (2015).   DOI
16 B. Gogas, V. Farooq, Y. Onuma, and P. W. Serruys, The ABSORB bioresorbable vascular scaffold an evolution or reverlution in interventional cardiology, Hellenic J. Cardiol., 53, 301-309 (2012).
17 G. L. Buchanan, S. Basavarajaiah, and A. Chieffo, Stent thrombosis: incidence, predictors and new technologies, Thrombosis, 2012, 956-962 (2012).
18 P. W. Serruys, Y. Onuma, H. M. Garcia, T. Muramatsu, R. J. vanGeuns, B. de Bruyne, D. Dudek, L. Thuesen, P. C. Smits, B. Chevalier, D. McClean, J. Koolen, S. Windecker, R. Whitbourn, I. Meredith, C. Dorange, S. Veldhof, K. M. Hebert, R. Rapoza, and J. A. Ormiston, Dynamics of vessel wall changes following the implantation of the absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months, Eurointervention, 9(11), 1271-1284 (2014).   DOI
19 P. Staehr, ABSORB bioresorbable vascular scaffold system. The 4th revolution in interventional cardiology, 17th Asian Harmonization Working Party Annual Conference, November 2-6, Taipei, Taiwan (2012).
20 D. Regazzoli, P. Leone, A. Colombo, and A. Latib, New generation bioresorbable scaffold technologies: An update on novel devices and clinical results, J. Thorac. Dis., 9, 979-985 (2017).   DOI
21 B. D. Gogas, Bioresorbable scaffolds for percutaneous coronary interventions, Glob. Cardiol. Sci. Pract., 40, 409-427 (2014).
22 A. Abizaid, R. A. Costa, and J. Schofer, Serial multimodality imaging and 2-year clinical outcomes of the novel DESolve novolimus-eluting bioresorbable coronary scaffold system for the treatment of single de novo coronary lesions, J. Am. Coll. Cardiol., 9, 565-574 (2016).
23 S. Verheye, J. A. Ormiston, J. Stewart, M. Webster, E. Sanidas, and R. Costa, A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation, JACC Cardiovasc. Interv., 7, 89-99 (2014).   DOI
24 M. Ying and Z. Chunjiao, Gloval Bioresorbable Vascular Scaffold Sales Market Report 2017, 1-129, QYResearch, CA, USA (2017).
25 J. Iqbal, Y. Ounuma, J. Ormistion, A. Abizaid, R. Wasksman, and P. W. Serruys, Bioresorbable scaffolds: rationale, current status, challenges, and future, Eur. Heart J., 35, 765-776 (2014).   DOI
26 Y. C. Lee, Health Industry Brief Medical Device Market Statistics: Stent, Korea Health Industry Development Institute, 52, 1-20 (2017).
27 H. Y. Ang, H. Bulluck, P. Wong, S. S. Venkatraman, Y. Huang, and N. Foin, Bioresrobable stent: Current and upcoming bioresorbable technologies, Int. J. Cardiol., 228, 931-939 (2017).   DOI
28 H. Hermawan, D. Dube, and D. Mantovani, Developments in metallic biodegradable stents, Acta Biomater, 6, 1693-1697 (2010).   DOI
29 C. Landau, R. A. Lange, and L. D. Hilis, Percutaneous transluminal coronary angioplasty, N. Engl. J. Med., 330, 981-993 (1994).   DOI