Browse > Article
http://dx.doi.org/10.14478/ace.2018.1030

Ytterbium Test for Water Vapor Transmission Rate Measurement of Passivation Film for Organic Electronics  

Lim, Young-Ji (Department of Creative Convergence Engineering, Hanbat National University)
Lee, Jae-Hyun (Department of Creative Convergence Engineering, Hanbat National University)
Publication Information
Applied Chemistry for Engineering / v.29, no.4, 2018 , pp. 484-487 More about this Journal
Abstract
In this paper, the optical and electrical properties of ytterbium films were studied for water vapor transmission rate (WVTR) analysis of encapsulation films used in organic electronic devices. Ytterbium thin films show a wide range of light transmittance (70-10%) and resistivity ($6.0-0.16m{\Omega}{\cdot}cm$) depending on various film thicknesses (20-100 nm). The Yb thin films were oxidized with moisture and its transmittance and resistance changed in real time. As a result, the WVTR of parylene and aluminum nitride (AlN) laminated thin encapsulation film was measured to be $4.3{\times}10^{-3}g/m^2{\cdot}day$ with the 25 nm thick ytterbium thin film.
Keywords
water vapor transmission rate; organic light emitting diodes (OLEDs); ytterbium; transmittance; resistivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Inagaki, V. Cech, K. Narushima, and Y. Takechi, Oxygen and water vapor gas barrier poly(ethylene naphthalate) films by deposition of SiOx plasma polymers from mixture of tetramethoxysilane and oxygen, J. Appl. Polym. Sci., 104, 915-925 (2007).   DOI
2 M. Hermenau, S. Schubert, H. Klumbies, J. Fahlteich, L. Müller-Meskamp, K. Leo, and M. Riede, The effect of barrier performance on the lifetime of small-molecule organic solar cells, Sol. Energy Mater. Sol. Cells, 97, 102-108 (2012).   DOI
3 P. E. Burrows, Ultra barrier flexibe substrates for flat panel displays, Displays, 22, 65-69 (2001).   DOI
4 Mocon, Inc., Aquatran Model 3, http://www.mocon.com/.
5 R. Dunkel, R. Bujas, A. Klein, and V. Horndt, Method of measuring ultralow water vapor permeation for OLED displays, Proc. IEEE, 93, 1478-1482 (2005).   DOI
6 M. D. Kempe, M. O. Reese, and A. A. Dameron, Evaluation of the sensitivity limits of water vapor transmission rate measurements using electrical calcium test, Rev. Sci. Instrum., 84, 025109 (2013).   DOI
7 S. Schubert, H. Klumbies, L. Müller-Meskamp, and K. Leo, Ctrical calcium test for moisture barrier evaluation for organic devices, Rev. Sci. Instrum., 82, 094101 (2011).   DOI
8 T. W. Kim, M. Yan, A. G. Erlat, P. A. McConnelee, M. Pellow, J. Deluca, T. P. Feist, A. R. Duggal, and M. Schaepkens, Transparent hybrid inorganic/organic barrier coatings for plastic organic light-emitting diode substrates, J. Vac. Sci. Technol. A, 23 971-977 (2005).   DOI
9 R. S. Kumar, M. Auch, E. Ou, G. Ewald, and C. S. Jin, Low moisture permeation measurement through polymer substrates for organic light emitting devices, Thin Solid Films, 417, 120-126 (2002).   DOI
10 J. A. Bertrand and S. M. George, Evaluating $Al_2O_3$ gas diffusion barriers grown directly on Ca films using atomic layer deposition techniques, J. Vac. Sci. Technol., 31, 01A122 (2013).   DOI
11 J.-W. Lim, K. Mimura, and M. Isshiki, Thickness dependence of resistivity for Cu films deposited by ion beam deposition, Appl. Surf. Sci., 217, 95-99 (2003).   DOI
12 M. A. Angadi and P. V. Ashrit, The effect of deposition parameters on the electrical properties of thin ytterbium films, Physica Status Solidi A, 77, 685-692 (1983).   DOI
13 A. Hogg, T. Aellen, S. Uhl, B. Graf, H. Keppner, Y. Tardy, and J. Burger, Ultra-thin layer packaging for implantable electronic devices, J. Micromech. Microeng., 23, 075001 (2013).   DOI
14 G.-R. Yang, S. Ganguli, J. Karcz, W. N. Gill, and T.-M. Lu, High deposition rate parylene films, J. Cryst. Growth, 183, 385-390 (1998).   DOI
15 J.-S. Park, H. Chae, H. K. Chung, and S. I. Lee, Thin film encapsulation for flexible AM-OLED: A review, Semicond. Sci. Technol., 26, 034001 (2011).   DOI
16 J.-H. Lee and A. Kim, Structural and thermal characteristics of the fast-deposited parylene substrate for ultra-thin organic light emitting diodes, Org. Electron., 47, 147-151 (2017).   DOI
17 J.-H. Lee and J.-J. Kim, Interfacial doping for efficient charge injection in organic semiconductors, Physica Status Solidi A, 209, 1399-1413 (2012).   DOI
18 H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, Degradation mechanism of small molecule-based organic light-emitting devices, Science, 283, 1900-1902 (1999).   DOI
19 R. Meerheim, S. Scholz, S. Olthof, G. Schwartz, S. Reineke, K. Walzer, and K. Leo, Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices, J. Appl. Phys., 104, 014510 (2008).   DOI