Browse > Article
http://dx.doi.org/10.14478/ace.2017.1116

Synthesis of High-energy-density Fuel through Dimerization of Bicyclo[2.2.1]hepta-2,5-diene over Co/HY Catalyst  

Kim, Jongjin (Department of Chemical Engineering, Kongju National University)
Shim, Beomseok (Department of Chemical Engineering, Kongju National University)
Lee, Gayoung (Department of Chemical Engineering, Kongju National University)
Han, Jeongsik (Agency for Defense Development)
Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
Publication Information
Applied Chemistry for Engineering / v.29, no.2, 2018 , pp. 185-190 More about this Journal
Abstract
The dimer of bicyclo [2.2.1] hepta-2,5-diene (norbornadiene) can be used as a high-energy-density fuel. The purpose of this study is to investigate the effect of Co loading on the acid properties of HY zeolite catalyst and the catalytic activity in norbornadiene dimerization. When the cobalt was loaded on the HY zeolite catalyst, the amount of acid sites did not change, but the acid strength weakened. This can be attributed to the decrease in $Br{\ddot{o}}nsted$ acid site and the increase in Lewis acid site. The norbornadiene conversion and yield of norbornadiene dimer over the Co/HY catalyst showed higher than those over the HY zeolite catalyst. The higher activity of the Co/HY catalyst can be ascribed to the higher amount of Lewis acid sites over the Co/HY catalyst. Density and calorific values of the norbornadiene dimer prepared by using the Co/HY catalyst agreed well with the known values in the literature. It was confirmed that the norbornadiene dimer prepared in this study can be used as a high-energy-density fuel.
Keywords
norbornadiene; dimerization; heterogeneous catalyst; Co/HY; high energy density fuel;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. H. Jeong and J. S. Han, Preparation of polycyclic hydrocarbon compounds by dimerization reaction of norbornadiene, J. Korean Soc. Propulsion Eng., 5, 190-193 (2007).
2 E. Xing, Z. Mi, C. Xin, L. Wang, and X. Zhang, Endo- to exo-isomerization of tetrahydrodicyclopentadiene catalyzed by commercially available zeolites, J. Mol. Catal. A, 231, 161-167 (2005).   DOI
3 Y. Li, J. J. Zou, X. Zhang, L. Wang, and Z. Mi, Product distribution of tricyclopentadiene from cycloaddition of dicyclopentadiene and cyclopentadiene: A theoretical and experimental study, Fuel, 89, 2522-2527 (2010).   DOI
4 N. M. Dao, Water-assisted selective methoxycarbonylation of 1,6-hexanediamine with dimethyl carbonate, MS Thesis, Kyung Hee University, Seoul, Korea (2008).
5 M. D. Nguyen, L. V. Nguyen, J. S Lee, J. S Han, B. H. Jeong, M. S. Cheong, H. S. Kim, and H. J. Kang, Promoting effect of $AlCl_3$ on the Fe-catalyzed dimerization of bicyclo[2.2.1]hepta-2,5-diene, Bull. Korean Chem. Soc., 29, 1364-1368 (2008).   DOI
6 Y. Wu, Y. Xue, and C. K. Kim, Computational studies on the dimers and the thermal dimerization of norbornadiene, J. Comput. Chem., 29, 1250-1258 (2007).
7 G. Zoche, Dimerization Process, US Patent 3,377,398 (1966).
8 A. Schneider, H. K. Myers, and G. Suld, Dimerization of norbornadiene to a mixture of exo-endo and endo-endo hexacyclic dimers, US Patent 4,275,254 (1981).
9 Y. Watanabe, T. Mitsudo, and S. W. Zhang, Pentacyclic hydrocarbon compound and halogenated pentacyclic hydrocarbon compound, and preparation processes thereof, US Patent 5,608,131 (1995).
10 M. D. Nguyen, L. V. Nguyen, E. H. Jeon, J. H. Kim, M. Cheong, H. S Kim, and J. S. Lee, Fe-containing ionic liquids as catalysts for the dimerization of bicyclo[2.2.1]hepta-2,5-diene, J. Catal., 258, 5-13 (2008).   DOI
11 N. F. Goldshleger, B. L. Azbel, Y. L. Isakov, E. S. Shpiro, and K. M. Minachev, Cyclodimerization of bicyclo[2.2.1]hepta-2,5-diene in the presence of rhodium containing zeolite catalysts, Stud. Surf. Sci. Catal., 105, 1235-1242 (1997).
12 N. F. Gol'dshleger, B. L. Azbel, Y. L. Isakov, E. S. Shpiro, and K. M. Minachev, Selective rhodium-containing zeolite catalysts for cyclodimerization of bicyclo[2.2.1]hepta-2,5-diene, J. Mol. Catal. A, 106, 159-168 (1996).   DOI
13 H. S. Chung, C. S. H. Chen, R. A. Kremer, and J. R. Boulton, Recent delopments in high-energy density liquid hydrocarbon fuels, Energy Fuels, 13, 641-649 (1999).   DOI
14 B. H. Jeong, J. Han, J. K. Jeon, E. Park, and K. Jeong, Method for preparing norbornadiene dimer using heterogeneous catalyst, Korea Patent 10-1616071 (2016).
15 K. Jeong, J. Kim, J. Han, B. Jeong, and J. K. Jeon, Dimerization of bicyclo[2.2.1.]hepta-2,5-diene over various zeolite catalysts, Top. Catal., 60, 743-749 (2017).   DOI
16 K. Jeong, J. Kim, J. Han, B. Jeong, and J. K. Jeon, Synthesis of high-energy-density fuel through the dimerization of bicyclo [2.2.1]hepta-2,5-diene over a nanoporous catalyst, J. Nanosci. Nanotechnol., 17, 8255-8259 (2017).   DOI
17 M. Niwa and N. Katada, New method for the temperature programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: A review, Chem. Rec., 13, 432-455 (2013).   DOI
18 W. E. Farneth and R. J. Gorte, Methods for characterizing zeolite acidity, Chemical Rev., 95, 615-635 (1995).   DOI
19 B. Chakraborty and B. Viswanathan, Surface acidity of MCM-41 by in situ IR studies of pyridine adsorption, Catal Today, 49, 253-260 (1999).   DOI
20 E. O. Lee, S. Y. Yun, Y. K. Park, S. Y. Jeong, J. S. Han, and J. K. Jeon, Selctive hydroisomerization of n-dodecane over platinum supported on SAPO-11, J. Ind. Eng. Chem., 20, 775-780 (2014).   DOI
21 G. T. Palomino, J. J. C. Pascual, M. R. Delgado, J. B. Parra, and C. O. Arean, FT-IR studies on the acidity of gallium-substituted mesoporous MCM-41 silica, Mater. Chem. Phys., 85, 145-150 (2004).   DOI
22 M. I. Zaki, M. A. Hasan, F. A. Al-Sagheer, and L. Pasupulety, In situ FTIR spectra of pyridine adsorbed on $SiO_2-Al_2O_3$, $TiO_2$, $ZrO_2$ and $CeO_2$: general considerations for the identification of acid sites on surfaces of finely divided metal oxides, Colloids Surf. A, 190, 261-274 (2001).   DOI
23 J. Kim, J. Han, T. S. Kwon, Y. K. Park, and J. K. Jeon, Oligomerization and isomerization of dicyclopentadiene over mesoporous materials produced from zeolite beta, Catal. Today, 232, 69-74 (2014).   DOI
24 K. Y. Kwak, M. S. Kim. D. W. Lee, Y. H. Cho, J. Han, T. S. Kwon, and K. Y. Lee, Synthesis of cyclopentadiene trimer (tricyclopentadiene) over zeolites and Al-MCM-41: The effects of pore size and acidity, Fuel, 137, 230-236 (2014).   DOI
25 E. Dalk and A. Dastan, Synthesis of cyclopentadiene derivatives by retro-Diels-Alder reaction of norbornadiene derivates. Tetrahedron, 71, 1966-1970 (2015).   DOI
26 J. J. Zou, Y. Xu, X. Zhang, and L. Wang, Isomerization of endo-dicyclopentadiene using Al-grafted MCM-41, Appl. Catal. A, 421-422, 79-85 (2012).   DOI