Browse > Article
http://dx.doi.org/10.14478/ace.2017.1050

Synthesis and Adsorption Characteristics of Guanidine-based CO2 Adsorbent  

Pacia, Rose Mardie (Department of Chemical Engineering, Kongju National University)
Pyo, Seong Won (Department of Chemical Engineering, Kongju National University)
Ko, Young Soo (Department of Chemical Engineering, Kongju National University)
Publication Information
Applied Chemistry for Engineering / v.28, no.4, 2017 , pp. 473-478 More about this Journal
Abstract
In this study, the guanidine compound, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was impregnated to three kinds of silica to prepare $CO_2$ adsorbents, and the $CO_2$ adsorption and physicochemical properties of the resulting adsorbents were investigated. The TBD amount of impregnation was changed and its effect on adsorption capacity and characteristics were studied. The physicochemical properties of TBD-impregnated silica were evaluated with $N_2$ adsorption/desorption, FT-IR, elemental analysis, and thermogravimetric analysis. The TBD-impregnated silica lowered the surface area and pore volume, and the increased impregnation amount of TBD made them further decrease. When TBD was 6 mmol/g, the $CO_2$ adsorption capacity was the highest at 7.3 wt%, and the adsorption capacity decreased due to the blocking phenomenon when the TBD amount increased.
Keywords
1,5,7-triazabicyclo[4,4,0]dec-5-ene; guanidine; $CO_2$ adsorption;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 X. Yan, L. Zhang, Y Zhang, G. Yang, and Z. Yan, Amine-modified SBA-15: effect of pore structure on the performance for $CO_2$ capture, Ind. Eng. Chem. Res., 50, 3220-3226 (2011).   DOI
2 S. H. Liu, C. H. Wu, H. K. Lee, and S. B. Liu, Highly stable amine-modified mesoporous silica materials for efficient $CO_2$ capture, Top. Catal., 53, 210-217 (2010).   DOI
3 Z. Z. Yang, L. N. He, Y. N. Zhao, B. Li, and B. Yu, $CO_2$ capture and activation by superbase/polyethylene glycol and its subsequent conversion, Energy Environ. Sci., 4, 3971-3975 (2011).   DOI
4 B. Ochiai, K. Yokota, A. Fujii, D. Nagai, and T. Endo, Reversible trap-release of $CO_2$ by polymers bearing DBU and DBN moieties, Macromolecule, 41, 1229-1236 (2008).   DOI
5 M. S. Kim and J. W. Park, Reversible, solid state capture of carbon dioxide by hydroxylated amidines, Chem. Commun., 46, 2507-2509 (2010).   DOI
6 F. S. Pereira, E. R. DeAzevedo, E. F. D. Silva, T. J. Bonagamba, D. L. D. S. Agostini, A. Magalhaes, A. E. Job, and E. R. P. Gonzalez, Study of the carbon dioxide chemical fixationdactivation by guanidines, Tetrahedron, 64, 10097-10106 (2008).   DOI
7 S. Carloni, D. E. D. Vos, P. A. Jacobs, R. Maggi, G. Sartori, and R. Sartorio, Catalytic activity of MCM-41-TBD in the selective preparation of carbamate and unsymmetrical alkyl carbonates from diethyl carbonate, J. Catal., 205, 199-204 (2002).   DOI
8 S. Music, N. Filipovic-Vincekovic, and L. Sekovanic, Precipitation of amorphous $SiO_2$ particles and their properties, Braz. J. Chem. Eng., 28, 89-94 (2011).   DOI
9 N. H. Khdary, A. E. Gassim, and A. G. Howard, Scavenging of benzodiazepine drugs from water using dual-functionalized silica nanoparticles, Anal. Methods, 4, 2900-2907 (2012).   DOI
10 V. Zelenak, D. Halamova, L. Gaberova, E. Bloch, and P. Llewellyn, Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: effect of amine basicity on sorption properties, Microporous Mesoporous Mater., 116, 358-364 (2008).   DOI
11 A. Huczynski, T. Pospieszny, M. Ratajczak-Sitarz, A. Katrusiak, and B. Brzezinski, Structural and spectroscopic studies of the 1:1 complex of lasalocid acid with 1,5,7-triazabicyclo[4,4,0]dec-5-ene, J. Mol. Struct., 875, 501-508 (2008).   DOI
12 B. Brzezinski, G. Schroeder, V. I. Rybachenko, L. I. Kozhevina, and V. V. Kovalenko, Study of 1,5,7-triazabicyclo[4,4,0]dec-5-ene protonation by vibrational spectroscopic method, J. Mol. Struct., 516, 123-130 (2000).   DOI
13 C. K. Yi, Advances of post-combustion carbon capture technology by dry sorbent, Korean J. Chem. Eng., 48, 140-146 (2010).
14 C. H. Yu, C. H. Huang, and C. S. Tan, A review of $CO_2$ capture by absorption and adsorption, Aerosol Air Qual. Res., 12, 745-769 (2012).
15 C. K. Yi, Advances of carbon capture technology, Korean Ind. Chem. News, 12, 30-42 (2009).
16 B. M. Min, Status of $CO_2$ capturing technologies in post combustion, Korean Ind. Chem. News, 12, 15-29 (2009).
17 G. P. Knowles, S. W. Delaney, and A. L. Chaffee, Diethylenetriamine[propyl(silyl)]-functionalized (dt) mesoporous silica as $CO_2$ adsorbents, Ind. Eng. Chem. Res., 45, 2626-2633 (2006).   DOI
18 D. H. Jo, K. S. Cho, C. G. Park, and S. H. Kim, Effects of inorganic-organic additives on $CO_2$ adsorption of activated carbon, Korean J. Chem. Eng., 50, 885-889 (2012).   DOI
19 A. Barbarini, R. Maggi, A. Mazzacani, G. Mori, G. Sartori, and R. Sartorio, Cycloaddition of $CO_2$ to epoxides over both homogeneous and silica-supported guanidine catalysts, Tetrahedron Lett., 44, 2931-2934 (2003).   DOI
20 Y. V. S. Rao, D. E. D. Vos, and P. A. jacobs, 1,5,7-Tkiazabicyclo [4,4,0]dec-5-ene immobilized in MCM-41: a strongly basic porous catalyst, Angew. Chem. Int. Ed., 36, 2661-2663 (1997).   DOI
21 M. G. Plaza, C. Pevida, A. Arenillas, F. Rubiera, and J. J. Pis, $CO_2$ capture by adsorption with nitrogen enriched carbon, Fuel, 86, 2204-2212 (2007).   DOI
22 D. I. Jang, K. S. Cho, and S. J. Park, Influence of amine surface treatment on carbon dioxide adsorption behaviors of activated carbon nanotubes, Appl. Chem. Eng., 20, 658-662 (2009).
23 H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland, and I. Wright, Progress in carbon dioxide separation and capture: a review, J. Environ. Sci., 20, 14-27 (2008).   DOI
24 J. C. Hicks, J. H. Drese, D. J. Fauth, M. L. Gray, G. Qi, and C. W. Joens, Designing adsorbents for $CO_2$ capture from flue gas-hyperbranched aminosilicas capable of capturing $CO_2$ reversibly, J. Am. Chem. Soc., 130, 2902-2903 (2008).   DOI