Browse > Article
http://dx.doi.org/10.14478/ace.2017.1069

Development of Biochip Sensors for Blood Biomarkers Specific to Alzheimer's Disease Diagnostics  

Kim, Suhee (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
Lee, Sang Hyuk (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
Lee, Hye Jin (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.28, no.4, 2017 , pp. 397-403 More about this Journal
Abstract
The number of patients suffering from Alzheimer's disease is increasing year after year and almost approaching 15% of the total elderly population. Although it is critical to detect the early stage of Alzheimer's disease, which is a serious illness causing cognitive deficits, various existing diagnosis methods such as MRI, PET and CSF analysis could be the burdens for patients due to their high costs and long time to diagnosis. In order to tackle some of challenging issues for such existing diagnosis methods, extensive efforts have been made on developing fast and convenient biochip sensing methodologies for the diagnosis of Alzheimer's disease with a droplet of patient biofluids (e.g., blood). In this mini-review, we highlight some of the latest biochip sensing technologies that could qualitatively and quantitatively analyze blood biomarkers used for Alzheimer's disease diagnostics and discuss briefly related research trends and future aspects.
Keywords
Alzheimer's disease; blood biomarker; biochip sensors; surface plasmon resonance; surface sandwich assay;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, J.-F. Dartigues, C. Duyckaerts, S. Epelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O'Bryant, G. D. Rabinovici, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and J. C. R. Jack, Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria, Alzheimers Dement., 12, 292-323 (2016).   DOI
2 A. Accorroni, F. S. Giorgi, R. Donzelli, L. Lorenzini, C. Prontera, A. Saba, A. Vergallo, G. Tognoni, G. Siciliano, F. Baldacci, U. Bonuccelli, A. Clerico, and R. Zucchi, Thyroid hormone levels in the cerebrospinal fluid correlate with disease severity in euthyroid patients with Alzheimer's disease, Endocrine, 55, 981-984 (2017).   DOI
3 L. Liu, N. Xia, and J. Wang, Potential applications of SPR in early diagnosis and progression of Alzheimer's disease, RSC Adv., 2, 2200-2204 (2012).   DOI
4 S. A. Park, J. H. Kim, H. J. Kim, T. E. Kim, Y.-J. Kim, D. H. Lee, J. H. Park, W. S. Chae, S. J. Yim, S. W. Seo, D. L. Na, and S. H. Choi, Preliminary study for a multicenter study of Alzheimer's disease cerebrospinal fluid biomarkers, Dement. Neurocogn. Disord., 12, 1-8 (2013).   DOI
5 J. M. Brockman, B. P. Nelson, and R. M. Corn, Surface plasmon resonance imaging measurements of ultrathin organic films, Annu. Rev. Phys. Chem., 51, 41-63 (2000).   DOI
6 K. M. Mayer and J. H. Hafner, Localized surface plasmon resonance sensors, Chem. Rev., 111, 3828-3857 (2011).   DOI
7 C. M. Cho, S. H. Kim, S. M. Yoon, Y. H. Ko, J. P. Jun, and J. H. Soung, Biomarker development for the diagnosis of Alzheimer's disease, Public Health Wkly. Rep., 8, 618-621 (2015).
8 M. Thambisetty, Y. An, A. Kinsey, D. Koka, M. Saleem, A. Guntert, M. Kraut, L. Ferrucci, C. Davatzikos, S. Lovestone, and S. M. Resnick, Plasma clusterin concentration is associated with longitudinal brain atrophy in mild cognitive impairment, Neurolmage, 59, 212-217 (2012).   DOI
9 K. Hegnerova, M. Bockova, H. Vaisocherova, Z. Kristofikova, J. Ricny, D. Ripova, and J. Homola, Surface plasmon resonance biosensors for detection of Alzheimer disease biomarker, Sens. Actuators B, 139, 69-73 (2009).   DOI
10 L. Velayudhan, R. Killick, A. Hye, A. Kinsey, A. Guntert, S. Lynham, M. Ward, R. Leung, A. Lourdusamy, A. W. M. To, J. Powell, and S. Lovestone, Plasma transthyretin as a candidate marker for Alzheimer's disease, J. Alzheimers Dis., 28, 369-375 (2012).   DOI
11 S. Tonello, M. Serpelloni, N. F. Lopomo, G. Abate, D. L. Uberti, and E. Sardini, Screen-printed biosensors for the early detection of biomarkers related to Alzheimer disease: preliminary results, Procedia Eng., 168, 147-150 (2016).   DOI
12 H. R. Jang, A. W. Wark, S. H. Baek, B. H. Chung, and H. J. Lee, Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform, Anal. Chem., 86, 814-819 (2014).   DOI
13 M. J. Kwon, J. Lee, A. W. Wark, and H. J. Lee, Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes, Anal. Chem., 84, 1702-1707 (2012).   DOI
14 S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev., 43, 3426-3452 (2014).   DOI
15 H. Vaisocherova, V. M. Faca, A. D. Taylor, S. Hanash, and S. Jiang, Comparative study of SPR and ELISA methods based on analysis of CD166/ALCAM levels in cancer and control human sera, Biosens. Bioelectron., 24, 2143-2148 (2009).   DOI
16 Y. Li, H. J. Lee, and R. M. Corn, Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging, Anal. Chem., 79, 1082-1088 (2007).   DOI
17 A. Bini, S. Centi, S. Tombelli, M. Minunni, and M. Mascini, Development of an optical RNA-based aptasensor for C-reactive protein, Anal. Bioanal. Chem., 90, 1077-1086 (2008).
18 J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging, Anal. Bioanal. Chem., 393, 1157-1163 (2009).   DOI
19 Z. Altintas, Y. Uludag, Y. Gurbuz, and I. E. Tothill, Surface plasmon resonance based immunosensor for the detection of the cancer biomarker carcinoembryonic antigen, Talanta, 86, 377-383 (2011).   DOI
20 Q. Zhao, R. Duan, J. Yuan, Y. Quan, H. Yang, and M. Xi, A reusable localized surface plasmon resonance biosensor for quantitative detection of serum squamous cell carcinoma antigen in cervical cancer patients based on silver nanoparticles array, Int. J. Nanomed., 9, 1097-1104 (2014).
21 J.-F. Masson, Surface plasmon resonance clinical biosensors for medical diagnostics, ACS Sens., 2, 16-30 (2017).   DOI
22 J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev., 108, 462-493 (2008).   DOI
23 A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease, Nano Lett., 4, 1029-1034 (2004).   DOI
24 M. D. Sonawane and S. B. Nimse, Surface modification chemistries of materials used in diagnostic platforms with biomolecules, J. Chem., 2016, 1-19 (2016).
25 A. J. Haes, L. Chang, W. L. Klein, and R. P. V. Duyne, Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor, J. Am. Chem. Soc., 127, 2264-2271 (2005).   DOI
26 S. Shekhar, R. Kumar, N. Rai, V. Kumar, K. Singh, A. D. Upadhyay, M. Tripathi, S. Dwivedi, A. B. Dey, and S. Dey, Estimation of tau and phosphorylated tau181 in serum of Alzheimer's disease and mild cognitive impairment patients, PLoS ONE, 11, 1-10 (2016).
27 H. J. Lee, A. W. Wark, and R. M. Corn, Microarray methods for protein biomarker detection, Analyst, 133, 975-983 (2008).   DOI
28 G.-J. Ye, R. A. Oshins, F. N. Rouhani, M. L. Brantly, and J. D. Chulay, Development, validation and use of ELISA for antibodies to human alpha-1 antitrypsin, J. Immunol. Methods., 388, 18-24 (2013).   DOI
29 W. Zhou, P.-J. J. Huang, J. Ding, and J. Liu, Aptamer-based biosensors for biomedical diagnostics, Analyst, 139, 2627-2640 (2014).   DOI
30 L. Y. Yeo, H.-C. Chang, P. P. Y. Chan, and J. R. Friend, Microfluidic devices for bioapplications, Small, 7, 12-48 (2011).   DOI
31 H. Li, C. Ya, X. Wu, Z. Ye, and G. Li, Peptide-based electrochemical biosensor for amyloid ${\beta}1-42$ soluble oligomer assay, Talanta, 93, 358-363 (2012).   DOI
32 C. Humpel, Identifying and validating biomarkers for Alzheimer's disease, Trends Biotechnol., 29, 26-32 (2011).   DOI
33 B. Olsson, R. Lautner, U. Andreasson, A. Ohrfelt, E. Portelius, M. Bjerke, M. Holtta, C. Rosen, C. Olsson, G. Strobel, E. Wu, K. Dakin, M. Petzold, K. Blennow, and H. Zetterberg, CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis, Lancet Neurol., 15, 673-684 (2016).   DOI
34 M. Thambisetty and S. Lovestone, Blood-based biomarkers of Alzheimer's disease: challenging but feasible, Biomark. Med., 4, 65-79 (2010).   DOI
35 K. Blennow and H. Hampel, CSF markers for incipient Alzheimer's disease, Lancet Neurol., 2, 605-613 (2003).   DOI
36 A. L. Baird, S. Westwood, and S. Lovestone, Blood-based proteomic biomarkers of Alzheimer's disease pathology, Front Neurol., 6, 1-16 (2015).
37 M. Ramakrishnan, K. K. Kandimalla, T. M. Wengenack, K. G. Howell, and J. F. Poduslo, Surface plasmon resonance binding kinetics of Alzheimer's disease amyloid $\beta$ peptide-capturing and plaque-binding monoclonal antibodies, Biochemistry, 48, 10405-10415 (2009).   DOI
38 F. S. Diba, S. Kim, and H. J. Lee, Electrochemical immunoassay for amyloid-beta 1-42 peptide inbiological fluids interfacing with a gold nanoparticle modified carbonsurface, Catal. Today, https://doi.org/10.1016/j.cattod.2017.02.039.   DOI
39 V. P.-Grijalba, P. Pesini, I. Monleon, M. Boada, L. Tarraga, A. R.-Laza, P. M.-Lage, I. S.-Jose, and M. Sarasa, Several direct and calculated biomarkers from the amyloid-$\beta$ pool in blood are associated with an increased likelihood of suffering from mild cognitive impairment, J. Alzheimers Dis., 36, 211-219 (2013).   DOI
40 K. Henriksen, Y. Wang, M. G. Sorensen, N. Barascuk, J. Suhy, J. T. Pedersen, K. L. Duffin, R. A. Dean, M. Pajak, C. Christiansen, Q. Zheng, and M. A. Karsdal, An enzyme-generated fragment of tau measured in serum shows an inverse correlation to cognitive function, PLoS ONE, 8, 1-7 (2013).
41 Y. Liu, Q. Zhou, and A. Revzin, An aptasensor for electrochemical detection of tumor necrosis factor in human blood, Analyst, 138, 4321-4326 (2013).   DOI
42 M. Vestergaard, K. Kerman, M. Saito, N. Nagatani, Y. Takamura, and E. Tamiya, A rapid label-free electrochemical detection and kinetic study of Alzheimer's amyloid beta aggregation, J. Am. Chem. Soc., 127, 11892-11893 (2005).   DOI
43 I. Abdulhalim, M. Zourob, and A. Lakhtakia, Surface plasmon resonance for biosensing: A mini-review, Electromagnetics, 28, 214-242 (2008).   DOI
44 T. Endo, K. Kerman, N. Nagatani, Y. Takamura, and E. Tamiya, Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor, Anal. Chem., 77, 6976-6984 (2005).   DOI
45 X. D. Hoa, A. G. Kirk, and M. Tabrizian, Towards intergrated and sensitive surface plasmon resonance biosensors: A review of recent progress, Biosens. Bioelectron., 23, 151-160 (2007).   DOI
46 S.-H. Jung, J.-W. Jung, I.-B. Suh, J. S. Yuk, W.-J. Kim, E. Y. Choi, Y.-M. Kim, and K.-S. Ha, Analysis of C-reactive protein on amide-linked n-hydroxysuccinimide-dextran arrays with a spectral surface plasmon resonance biosensor for serodiagnosis, Anal. Chem., 9, 5703-5710 (2007).
47 H. Englund, D. Sehlin, A.-S. Johansson, L. N. G. Nilsson, P. Gellerfors, S. Paulie, L. Lannfelt, and F. E. Pettersson, Sensitive ELISA detection of amyloid-$\beta$ protofibrils in biological samples, J. Neurochem., 103, 334-345 (2007).
48 R. J. Bateman, C. Xiong, T. L. S. Benzinger, A. M. Fagan, A. Goate, N. C. Fox, D. S. Marcus, N. J. Cairns, X. Xie, T. M. Blazey, D. M. Holtzman, A. Santacruz, V. Buckles, A. Oliver, K. Moulder, P. S. Aisen, B. Ghetti, W. E. Klunk, E. McDade, R. N. Martins, C. L. Masters, R. Mayeux, J. M. Ringman, M. N. Rossor, P. R. Schofield, R. A. Sperling, S. Salloway, and J. C. Morris, Clinical and biomarker changes in dominantly inherited Alzheimer's disease, N. Engl. J. Med., 367, 795-804 (2012).   DOI
49 J. Holger, Memory loss in Alzheimer's disease, Dialogues Clin. Neurosci., 15, 445-454 (2013).
50 A. Olaru, C. Bala, N. J.-Renault, and H. Y. A.-Enein, Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis, Crit. Rev. Anal. Chem., 45, 97-105 (2015).   DOI
51 S. Levy, M. McConville, G. A. Lazaro, and P. Averback, Competitive ELISA studies of neural thread protein in urine in Alzheimer's disease, J. Clin. Lab. Anal., 21, 24-33 (2007).   DOI
52 F. S. Diba, S. Kim, and H. J. Lee, Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips, Biosens. Bioelectron., 72, 355-361 (2015).   DOI
53 J. Homola, S. S. Yee, and G. Gauglitz, Susrface plasmon resonanace sensors: review, Sens. Actuators B, 54, 3-15 (1999).   DOI
54 R. M. Corn and S. C. Weibel, Fourier transform surface plasmon resonance in Handbook of vibrational spectroscopy, vol. 2, J. M. Chalmers and P. R. Griffiths (eds), John Wiley & Sons, Ltd, 1057-1064 (2006).
55 S. Kim, A. W. Wark, and H. J. Lee, Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance, Anal. Chem., 88, 7793-7799 (2016).   DOI
56 S. Kim and H. J. Lee, Direct detection of : ${\alpha}-1$ antitrypsin in serum samples using surface plasmon resonance with a new aptamer-antibody sandwich assay, Anal. Chem., 87, 7235-7240 (2015).   DOI