Browse > Article
http://dx.doi.org/10.14478/ace.2017.1017

Nitric Oxide Sensing Property of Gas Sensor Based on Activated Carbon Fiber Radiated by Electron-beam  

Lee, Sangmin (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Jung, Min-Jung (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Kyeong Min (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.28, no.3, 2017 , pp. 299-305 More about this Journal
Abstract
Activated carbon fibers (ACFs) were surface-modified by electron beam (E-beam) irradiation and used as a gas sensor electrode to investigate the effect of E-beam on nitric oxide (NO) gas sensing performance. XPS results showed that the oxygen component of ACFs surface treated by E-beam decreased and $sp^2$ bonded carbon of ACFs surface increased. These results were attributed to the structural transformation of ACFs surface irradiated by E-beam. NO gas sensitivity of the electrode composed of ACFs irradiated by100 kGy increased from about 4% to 8%, and the response time was also meaningfully enhanced from 360 s to 120 s. This is due to the fact that the $sp^2$ carbon bond increased by E-beam irradiation of activated carbon fibers, which significantly affects the resistance change of the electrode in NO gas sensing.
Keywords
activated carbon fiber; electron beam; nitric oxide; gas sensor;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 J. Zhang, Y. Zhang, Z. Pan, S. Yang, J. Shi, S. Li, D. Min, X. Li, X. Wang, D. Liu, and A. Yang, Properties of a weakly ionized NO gas sensor based on multi-walled carbon nanotubes, Appl. Phys. Lett., 107, 093104 (2015).   DOI
2 G. Ko, H. Y. Kim, J. Ahn, Y. M. Park, K. Y. Lee, and J. Kim, Graphene-based nitrogen dioxide gas sensors, Curr. Appl. Phys., 10, 1002-1004 (2010).   DOI
3 M.-J. Jung, M.-S. Park, S. Lee, and Y.-S. Lee, Effect of E-beam radiation with acid drenching on surface properties of pitch-based carbon fibers, Appl. Chem. Eng., 27, 319-324 (2016).   DOI
4 J. G. Kim, S. C. Kang, E. Shin, D. Y. Kim, J. H. Lee, and Y.-S. Lee, $CO_2$ Sensing characteriestics of carbon-nanofibers based on effects of porosity and amine functional group, Appl. Chem. Eng., 23, 47-52 (2012).
5 G. Lu, L. E. Ocola, and J. Chen, Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes, Adv. Mater., 21, 2487-2491 (2009).   DOI
6 C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, Metal oxide gas sensors: Sensitivity and influencing factors, Sensors, 10, 2088-2106 (2010).   DOI
7 J. S. Im, S. C. Kang, S.-H. Lee, and Y.-S. Lee, Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification, Carbon, 48, 2573-2581 (2010).   DOI
8 S. C. Kang, J. S. Im, S.-H. Lee, T.-S. Bae, and Y.-S. Lee, High-sensitivity gas sensor using electrically conductive and porosity-developed carbon nanofiber, Colloids Surf. A, 384, 297-303 (2011).   DOI
9 S. C. Kang, J. S. Im, and Y.-S. Lee, Hydrogen sensing property of porous carbon nanofibers by controlling pore structure and depositing Pt Catalyst, Appl. Chem. Eng., 22, 243-248 (2011).
10 S.-H. Kim, Y.-J. Noh, S.-N. Kwon, B.-N. Kim, B.-C. Lee, S.-Y. Yang, C.-H. Jung and S.-I. Na, Efficient modification of transparent graphene electrodes by electron beam irradiation for organic solar cells, J. Ind. Eng. Chem., 26, 210-213 (2015).   DOI
11 J.-S. Roh, Structural study of the activated carbon fiber using laser raman spectroscopy, Carbon Lett., 9, 127-130 (2008).   DOI
12 N. Benbettaieb, T. Karbowiak, C. H. Brachais, and F. Debeaufort, Impact of electron beam irradiation on fish gelatin film properties, Food Chem., 195, 11-18 (2016).   DOI
13 X. Sui, Z. Xu, C. Hu, L. Chen, L. Liu, L. Kuang, M. Ma, L. Zhao, J. Li, and H. Deng, Microstructure evolution in ${\gamma}$-irradiated carbon fibers revealed by a hierarchical model and Raman spectra from fiber section, Compos. Sci. Technol., 130, 46-52 (2016).   DOI
14 J. G. Kim, C. H. Chung, and Y.-S. Lee, The effect of crystallization by heat treatment on electromagnetic interference shielding efficiency of carbon fibers, Appl. Chem. Eng., 22, 138-143 (2011).
15 N. Shimodaira and A. Masui, Raman spectroscopic investigations of activated carbon materials, J. Appl. Phys., 92, 902-909 (2002).   DOI
16 M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys., 9, 1276-1291 (2007).   DOI
17 N. Hu, Y. Wang, J. Chai, R. Gao, Z. Yang, E. S.-W. Kong, and Y. Zhang, Gas sensor based on p-phenylenediamine reduced graphene oxide, Sens. Actuators B, 163, 107-114 (2012).   DOI
18 J. G. Kim, J. S. Im, T.-S. Bae, J. H. Kim, and Y.-S. Lee, The electrochemical behavior of an enzyme biosensor electrode using an oxyfluorinated pitch-based carbon, J. Ind. Eng. Chem., 19, 94-98 (2013).   DOI
19 Y. Talukdar, J. T. Rashkow, G. Lalwani, S. Kanakia, and B. Sitharaman, The effects of graphene nanostructures on mesenchymal stem cells, Biomaterials, 35, 4863-4877 (2014).   DOI
20 J. Shangguan, C.-H. Li, M.-Q. Miao, and Z. Yang, Surface characterization and $SO_2$ removal activity of activated semi-coke with heat treatment, New Carbon Mater., 23, 37-43 (2008).   DOI
21 M.-J. Jung, M.-S. Park, and Y.-S. Lee, Effects of E-Beam irradiation on the chemical, physical, and electrochemical properties of activated carbons for electric double-layer capacitors, J. Nanomater., 2015, 1-8 (2015).
22 S. Gupta, R. J. Patel, N. Smith, R. E. Giedd, and D. Hui, Room temperature dc electrical conductivity studies of electron-beam irradiated carbon nanotubes, Diam. Relat. Mater., 16, 236-242 (2007).   DOI
23 B. H. Kim, D. H. Lee, K. S. Yang, B. C. Lee, Y. A. Kim, and M. Endo, Electron beam irradiation-enhanced wettability of carbon fibers, Appl. Mater. Interfaces, 3, 119-123 (2011).   DOI
24 Y. Nishi, A. Mizutani, and N. Uchida, electron beam strengthening for carbon fiber-reinforced composite materials, J. Thermoplast. Compos. Mater., 17, 289-302 (2004).   DOI
25 S.-H. Hwang, H.-S. Park, D.-W. Kim, and Y.-M. Jo, Preparation of activated carbon fiber adsorbent for enhancement of $CO_2$ capture capacity, J. Korean Soc. Atmos. Environ., 31, 538-547 (2015).   DOI
26 M. C. Evora, D. Klosterman, K. Lafdi, L. Li, and J. L. Abot, Functionalization of carbon nanofibers through electron beam irra diation, Carbon, 48, 2037-2046 (2010).   DOI
27 M. C. Evora, D. Klosterman, K. Lafdi, L. Li, and L. G. A. Silva, Study of an alternative process for oxidizing vapor grown carbon nanofibers using electron beam accelerators, Radiat. Phys. Chem., 84, 105-110 (2013).   DOI
28 W.-S. Cho, S.-I. Moon, K.-K. Paek, Y.-H. Lee, J.-H. Park, and B.-K. Ju, Patterned multiwall carbon nanotube films as materials of $NO_2$ gas sensors, Sens. Actuators B, 119, 180-185 (2006).   DOI
29 S. Abdulla, T. L. Mathew, and B. Pullithadathil, Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection, Sens. Actuators B, 221, 1523-1534 (2015).   DOI
30 J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, Practical chemical sensors from chemically derived graphene, ACS Nano, 3, 301-306 (2009).   DOI
31 N. Hu, Z. Yang, Y. Wang, L. Zhang, Y. Wang, X. Huang, H. Wei, L. Wei, and Y. Zhang, Ultrafast and sensitive room temperature $NH_3$ gas sensors based on chemically reduced graphene oxide, Nanotechnology, 25, 025502 (2014).   DOI