Browse > Article
http://dx.doi.org/10.14478/ace.2016.1086

Fabrication of Gel-type Electrolyte for the Development of Reference Electrode for Sea Water and Application to Measuring Equipment for Total Residual Oxidants  

Kim, Yu-Jin (Central research center, Techcross)
Lee, Hae-Don (Central research center, Techcross)
Kim, Dae-Won (Central research center, Techcross)
Publication Information
Applied Chemistry for Engineering / v.28, no.2, 2017 , pp. 153-157 More about this Journal
Abstract
Gel type internal electrolytes were synthesized by varying hydroxyethyl-cellulose (HEC) amounts and their durability and conductivity were measured. The ionic conductivity decreased as the content of HEC increased thus the internal electrolyte containing more than 12% of HEC could not be used as a reference electrode. Based on durability test results, as the HEC amount decreased carrier density resulting in increasing of the amount of KCl coming out of the porous membrane. Therefore in order to use long time at ballast water treatment systems, we selected 10% HEC for gel type internal electrolyte. The resolution test for total residual oxidants (TRO) was carried out using the TRO sensor and the gel type reference electrode made of 10% HEC. A 50 mV potential was applied to the TRO sensor for 30 sec and changes in the current were measured. It was confirmed that the TRO concentrations ranging from 0 to 15 mg/L could be separated at salinity conditions of 0.2~30 PSU. The results indicated that the TRO concentration at sea water and at fresh water was successfully measured by the TRO sensor constructed with the reference electrode using gel-type internal electrolyte of HEC.
Keywords
gel polymer electrolyte; reference electrode; electrochemical sensor; total residual oxidants; ballast water management system;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 X. H. Dai, J. Zhang, X. J. Pang, J. P. Zhou, G. Z. Liu, and S. Y. Zhang, Ferrocene-enhanced polyvinyl chloride-coated electrode for the potentiometric detection of total residual chlorine in simulated ballast water, J. Electroanal. Chem., 760, 158-164 (2016).   DOI
2 F. Kodera, M. Umeda, and A. Yamada, Determination of free chlorine based on anodic voltammetry using platinum, gold, and glassy carbon electrodes, Anal. Chim. Acta, 537, 293-298 (2005).   DOI
3 D. K. Lee, T. Y. Kang, H. J. Woo, S. W. Kim, and J. K. Kim, Residual chlorine sensor on electrochemistry and measurement equipment use thereof, Korean Patent 10-2002-0043267 (2002).
4 H. Hwang, Methods of Electrochemical Analysis, 1-17, Free Academy, Gyeonggi-do, Korea (2011).
5 G. Inzelt, A. Lewenstam, and F. Scholz, Handbook of Reference Electrode, 92-96, Springer, NY, USA (2013).
6 F. Javier Del Campo, O. Ordeig, and F. Javier Munoz, Improved free chlorine amperometric sensor chip for drinking water application, Anal. Chim. Acta, 554, 98-104 (2005).   DOI
7 M. Murata, T. A. Ivandini, M. Shibata, S. Nomura, A. Fujishima, and Y. Einaga, Electrochemical detection of free chlorine at highly boron-doped diamond electrodes, J. Electroanal. Chem., 612, 29-36 (2008).   DOI
8 W. Vonau, W. OelBner, U. Guth, and J. Henze, An all-solid-state reference electrode, Sens. Actuators B, 144, 368-373 (2010).   DOI
9 B. J. An, J. T. Lee, and C. E. Lee, Novel Cosmetic Materials, 230-231, Kwang Moon Gak, Gyeonggi-do, Korea (2009).
10 S. J. Oh, H. J. Shim, D. W. Kim, M. H. Lee, C. J. Lee, and Y. K. Kang, In-situ cross-linked gel polymer electrolyte using perfluorinated acrylate as cross-linker, J. Korean Electrochem. Soc., 13, 145-152 (2010).   DOI
11 D. E. Verna and B. P. Harris, Review of ballast water management policy and associated implications for Alaska, Mar. Policy, 70, 13-21 (2016).   DOI
12 D. R. Scriven, C. Dibacco, A. Locke, and T. W. Therriault, Ballast water management in Canada: A historical perspective and implications for the future, Mar. Policy, 59, 121-133 (2015).   DOI
13 L. Maglic, D. Zec, and V. Francic, Ballast water sediment elemental analysis, Mar. Pollut. Bull., 103, 93-100 (2016).   DOI
14 J. Culin and B. Mustac, Environmental risks associated with ballast water management systems that create disinfection by-products (DBPs), Ocean Coast Manag., 105, 100-105 (2015).   DOI
15 K. W. Park, S. T. Kim, H. D. Lee, Y. S. Park, D. W. Kim, K. S. Lee, J. H. Ku, and Y. J. Kim, Ballast water treatment system, US Patent 14/779,153 (2014).
16 B. Werschkun, S. Banerji, O. C. Basurko, M. David, F. Fuhr, S. Gollasch, T. Grummt, M. Harrich, A. N. Jha, S. Kacan, A. Kehrer, J. Linders, E. Mesbahi, D. Pughiuc, S. D. Richardson, B. S. Schulz, A. Shah, N. Theoblad, U. V. Gunten, S. Wieck, and T. Hofer, Emerging risks from ballast water treatment: The run-up to the International Ballast Water Management Convention, Chemosphere, 112, 256-266 (2014).   DOI
17 N. Zhang, Y. Wang, J. Xue, L. Yuan, Q. Wang, L. Liu, H. Wu, and K. Hu, Risk assessment of human health from exposure to the discharged ballast water after full-scale electrolysis treatment, Regul. Toxicol. Pharmacol., 77, 192-199 (2016).   DOI
18 S. Delacroix, C. Vogelsang, A. Tobiesen, and H. Liltved, Disinfection by-products and ecotoxicity of ballast water after oxidative treatment - Results and experiences from seven years of full-scale testing of ballast water management systems, Mar. Pollut. Bull., 73, 24-36 (2013).   DOI
19 A. G. Zimmer-Faust, R. F. Ambrose, and M. N. Tamburri, Evaluation of approaches to quantify total residual oxidants in ballast water management system employing chlorine for disinfection, Water Sci. Technol., 70, 1585-1593 (2014).   DOI
20 M. Jovic, F. Cortes-Salazar, A. Lesch, V. Amstutz, H. Bi, and H. H. Girault, Electrochemical detection of free chlorine at inkjet printed silver electrodes, J. Electroanal. Chem., 756, 171-178 (2015).   DOI
21 B. Saad, W. T. Wai, Md. S. Jab, W. S. W. Ngah, M. I. Saleh, and J. M. Salter, Development of flow injection spectrophotometric methods for the determination of free available chlorine and total available chlorine: comparative study, Anal. Chim. Acta, 537, 197-206 (2005).   DOI
22 L. Moberg and B. Karlberg, An improved N,N'-diethyl-p-phenylenediamine (DPD) method for the determination of free chlorine based on multiple wavelength detection, Anal. Chim. Acta, 407, 127-133 (2000).   DOI