Browse > Article
http://dx.doi.org/10.14478/ace.2016.1074

ZnO-free Inverted Polymer Solar Cells Based on New Viologen Derivative as a Cathode Buffer Layer  

Kim, Youn Hwan (Department of Polymer Engineering, Pukyong National University)
Kim, Dong Geun (Department of Polymer Engineering, Pukyong National University)
Kim, Joo Hyun (Department of Polymer Engineering, Pukyong National University)
Publication Information
Applied Chemistry for Engineering / v.27, no.5, 2016 , pp. 512-515 More about this Journal
Abstract
A new viologen derivative namely 1,1'-bis(3,4-dihydroxybutyl)-[4,4'-bipyridine]-1,1'-diium bromide (V-Pr-2OH) was synthesized and applied as a cathode buffer layer to inverted polymer solar cells (PSCs) based on the blend of PTB7 : $PC_{71}BM$. PSCs with the structure of ITO/V-Pr-2OH/PTB7 : $PC_{71}BM/MoO_3/Ag$ as the cathode buffer layer showed the power conversion efficiency (PCE) up to 7.28%, which is comparable to that of the PSCs with the structure of ITO/ZnO/PTB7 : $PC_{71}BM/MoO_3/Ag$ (7.44%) in the absence of V-Pr-2OH. This study demonstrates that a highly efficient PSCs without any high temperature heat treatment can be obtained.
Keywords
inverted polymer solar cell; cathode interlayer; viologen;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 X. Liu, R. Xu, C. Duan, F. Huang, and Y. Cao, Non-conjugated water/alcohol soluble polymers with different oxidation states of sulfide as cathode interlayers for high-performance polymer solar cells, J. Mater. Chem. C, 4, 4288-4295 (2016).
2 T. T. Do, H. S. Hong, Y. E. Ha, G. E. Lim, Y. S. Won, and J. H. Kim, Investigation of the effect of conjugated oligoelectrolyte as a cathode buffer layer on the photovoltaic properties, Synth. Met., 198, 122-130 (2014).   DOI
3 T. T. Do, H. S. Hong, Y. E. Ha. S. I. Yoo, Y. S. Won, M. J. Moon, and, J. H. Kim, Synthesis and characterization of conjugated oligoelectrolytes based on fluorene and carbazole derivative and application of polymer solar cell as a cathode buffer layer, Macromol. Res., 23, 367-376 (2015).   DOI
4 C. Min, C. Shi, W. Zhang, T. Jiu, J. Chen, D. Ma, and J. Fang, A small-molecule zwitterionic electrolyte without a ${\pi}$-delocalized unit as a charge-injection layer for high-performance PLEDs, Angew. Chem. Int. Ed., 52, 3417-3420 (2013).   DOI
5 Z. Liu, X. Ouyang, R. Peng, Y. Bai, D. Mi, W. Jiang, A. Facchetti, and Z. Ge, Efficient polymer solar cells based on the synergy effect of a novel non-conjugated small-molecule electrolyte and polar solvent, J. Mater. Chem. A, 4, 2530-2536 (2016).   DOI
6 X. Li, W. Zhang, X. Wang, Y. Wu, F. Gao, and J. Fang, Critical role of the external bias in improving the performance of polymer solar cells with a small molecule electrolyte interlayer, J. Mater. Chem. A, 3, 504-508 (2015).   DOI
7 J. H. Seo, A. Gutacker, Y. M. Sun, H. B. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger, and G. C. Bazan, Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte inter-layer, J. Am. Chem. Soc., 133, 8416-8419 (2011).   DOI
8 Z. -K. Tan, Y. Vaynzof, D. Credgington, C. Li, M. T. L. Casford, A. Sepe, S. Huettner, M. Nikolka, F. Paulus, L. Yang, H. Sirringhaus, N. C. Greenham, and F. H. Friend, In-situ switching from barrier- limited to ohmic anodes for efficient organic optoelectronics, Adv. Funct. Mater., 24, 3051-3058 (2014).   DOI
9 S. Nam, J. Jang, H. Cha, J. Hwang, T. K. An, S. Park, and C. E. Park, Effects of direct solvent exposure on the nanoscale morphologies and electrical characteristics of PCBM-based transistors and photovoltaics, J. Mater. Chem., 22, 5543-5549 (2012).   DOI
10 H. Q. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T. -Q. Nguyen, and A. J. Heeger, High-efficiency polymer solar cells enhanced by solvent treatment, Adv. Mater., 25, 1646-1652 (2013).   DOI
11 Y. Wang, Y. Liu, S. Chen, R. Peng, and Z. Ge, Significant enhancement of polymer solar cell performance via side-chain engineering and simple solvent treatment, Chem. Mater., 25, 3196-3204 (2013).   DOI
12 A. Bagui and S. S. K. Iyer, Increase in hole mobility in poly (3-hexyl thiophene-2,5-diyl) films annealed under electric field during the solvent drying step, Org. Electron., 15, 1387-1395 (2014).   DOI
13 V. D. Mihailetchi, J. K. van Duren, P. W. Blom, J. C. Hummelen, R. A. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, and M. M. Wienk, Electron transport in a methano fullerene, Adv. Funct. Mater., 13, 43-46 (2003).   DOI
14 L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao, and L. Yu, Recent advances in bulk hetero junction polymer solar cells, Chem. Rev., 115, 12666-12731 (2015).   DOI
15 G. Yu, J .Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Polymer photo voltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 270, 1789-1791 (1995).   DOI
16 W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Hybrid nanorod- polymer solar cells, Science, 295, 2425-2427 (2002).   DOI
17 S. Gunes, H. Neugebauer, and N. S. Sariciftci, Conjugated polymer- based organic solar cells, Chem. Rev., 107, 1324-1338 (2007).   DOI
18 V. Vohra, K. Kawashima, T. Kakara, T. Koganezawa, I. Osaka, K. Takimiya, and H. Murata, Efficient inverted polymer solar cells employing favourable molecular orientation, Nat. Photonics, 9, 403-408 (2015).   DOI
19 Y. Liang, Z. Xu, J. B. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, For the bright future-bulk hetero junction polymer solar cells with power conversion efficiency of 7.4%, Adv. Mater., 22, E135-E138 (2010).   DOI
20 B. Kan, M. Li, Q. Zhang, F. Liu, X. Wan, Y. Wang, W. Ni, G. Long, X. Yang, H. Feng, Y. Zuo, M. Zhang, F. Huang, Y. Cao, T. P. Russell, and Y. Chen, A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency, J. Am. Chem. Soc., 137, 3886-3893 (2015).   DOI
21 Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photonics, 6, 591-595 (2012).   DOI
22 W. Ma, P. K. Iyer, X. Gong, B. Kiu, D. Moses, G. Bazan, and A. J. Heeger, Water/methanol-soluble conjugated copolymer as an electron-transport layer in polymer light-emitting diodes, Adv. Mater., 17, 274-277 (2005).   DOI
23 M. Y. Jo, Y. E. Ha, and J. H. Kim, Polyviologen derivatives as an interfacial layer in polymer solar cells, Sol. Energy Mater. Sol. Cells., 107, 1-8 (2012).   DOI
24 M. Y. Jo, Y. E. Ha, and J. H. Kim, Interfacial layer material derived from dialkylviologen and sol-gel chemistry for polymer solar cells, Org. Electron., 14, 995-1001 (2013).   DOI
25 G. E. Lim, Y. E. Ha, M. Y. Jo, J. Park, Y. C. Kang, and J. H. Kim, Non-conjugated anionic polyelectrolyte as an interfacial layer for the organic optoelectronic devices, ACS Appl. Mater. Interfaces, 5, 6508-6513 (2013).   DOI
26 H. Wang, W. Zhang, C, Xu, X. Bi, B. Chen, and S. Yang, Efficiency enhancement of polymer solar cells by applying poly(vinylpyrrolidone) as a cathode buffer layer via spin coating or self-assembly, ACS Appl. Mater. Interfaces, 5, 26-34 (2013).   DOI
27 F. Zhang, M. Ceder, and O. Inganas, Enhancing the photovoltage of polymer solar cells by using a modified cathode, Adv. Mater., 19, 1835-1838 (2007).   DOI
28 G. E. Lim, Y. E. Ha, M. Y. Jo, J. Park, Y. C. Kang, S. J. Moon, and H. J. Kim, Enhancing the efficiency of opto-electronic devices by the cathode modification. J. Mater. Chem. C, 2, 3820-3825 (2004).