Browse > Article
http://dx.doi.org/10.14478/ace.2016.1061

Development of High-performance Supercapacitors Based on MnO2/Functionalized Graphene Nanocomposites  

Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.27, no.4, 2016 , pp. 439-443 More about this Journal
Abstract
In this report, $MnO_2$ nanoparticle-deposited functionalized graphene sheets were prepared and their superior electrochemical performances were demonstrated by cyclic voltammetry, galvanostatic charge-discharge, and impedance analysis. Ionic liquids were employed to functionalize the surface of reduced graphene oxides (RGOs), leading to prevention of the aggregation of RGO sheets and abundant growth sites for deposition of $MnO_2$ nanoparticles. As-prepared $MnO_2/RGO$ nanocomposites were characterized using scanning electron microscope, transition electron microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. Electrochemical properties of $MnO_2/RGO$ electrode were evaluated using $Na_2SO_4$ electrolyte under a three-electrode system. The $MnO_2/RGO$ electrode showed a high specific capacitance (251 F/g), a high rate capability (80.5% retention), and long-term stability (93.6% retention).
Keywords
$MnO_2$; graphene; supercapacitor; nanocomposite; ionic liquid;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J.-K. Sun, E.-H. Um, and C.-T. Lee, Electrochemical characteristics of the activated carbon electrode modified with the microwave radiation in the electric double layer capacitor, Appl. Chem. Eng., 21, 11-17 (2010).
2 R.-G. Oh, J.-E. Hong, W.-G. Yang, and K.-S. Ryu, Study of lithium ion capacitors using carbonaceous electrode utilized for anode in lithium ion batteries, Appl. Chem. Eng., 24, 489-548 (2013).
3 J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y.-S. Lee, Preparation and electrochemical characterization of activated carbon electrode by amino-fluorination, Appl. Chem. Eng., 22, 405-410 (2011).
4 M. Yang, S. B. Hong, and B. G. Choi, Hierarchical core/shell structure of $MnO_2$@polyaniline composites grown on carbon fiber paper for application in pseudocapacitors, Phys. Chem. Chem. Phys., 17, 29874-29879 (2015).   DOI
5 S. Zhang and N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater., 5, 1401401-1401420 (2015).   DOI
6 K. Naoi, S. Ishimoto, J.-I. Miyamoto, and W. Naoi, Second generation 'nanohybrid supercapacitor': evolution of capacitive energy storage devices, Energy Environ. Sci., 5, 9363-9373 (2012).   DOI
7 M. Acerce, D. Voiry, and M. Chhowalla, Metallic 1T phase $MoS_2$ nanosheets as supercapacitor electrode materials. Nat. Nanotechnol., 10, 313-318 (2015).   DOI
8 V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7, 1597-1614 (2014).   DOI
9 X. Zhao, B. M. Sanchez, P. J. Dobson, and P. S. Gran, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 3, 839-855 (2011).   DOI
10 V. Aravindan, J. Gnanaraj, Y.-S. Lee, and S. Madhavi, Insertion-type electrodes for nonaqueous Li-ion capacitors, Chem. Rev., 144, 11619-11635 (2014).
11 F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, and Y. Wu, Electrode materials for aqueous asymmetric supercapacitors, RSC Adv., 3, 13059-13084 (2013).   DOI
12 B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, and Y. S. Huh, 3D macroporous graphene frameworks for supercapacitors with high energy and power densities, ACS Nano, 6, 4020-4028 (2012).   DOI
13 M. Yang, K. G. Lee, S. J. Lee, S. B. Lee, Y.-K. Han, and B. G. Choi, Three-dimensional expanded graphene-metal oxide film via solid-state microwave irradiation for aqueous asymmetric supercapacitors, ACS Appl. Mater. Interfaces, 7, 22364-22371 (2015).   DOI
14 H. Chen, S. Zhou, and L. Wu, Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials, ACS Appl. Mater. Interfaces, 6, 8621-8630 (2014).   DOI
15 J. Zhang and J. W. Lee, Supercapacitor electrodes derived from carbon dioxide, ACS Sustainable Chem. Eng., 2, 735-740 (2014).   DOI
16 S. Ye, J. Feng, and P. Wu, Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode, ACS Appl. Mater. Interfaces, 5, 7122-7129 (2013).   DOI
17 W. Chen, R. B. Rakhi, L. Hu, X. Xie, Y. Cui, and H. N. Alshareef, High-performance nanostructured supercapacitors on a sponge, Nano. Lett., 11, 5165-5172 (2011).   DOI
18 W. S. Hummers and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80, 1339 (1958).   DOI
19 B. G. Choi, H. Park, T. J. Park, M. H. Yang, J. S. Kim, S.-Y. Jang, N. S. Heo, S. Y. Lee, J. Kong, and W. H. Hong, Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors, ACS Nano, 4, 2910-2918 (2010).   DOI
20 B. G. Choi and H. S. Park, Controlling size, amount, and crystalline structure of nanoparticles deposited on graphenes for highly efficient energy conversion and storage, ChemSusChem., 5, 709-715 (2012).   DOI
21 W. Wei, X. Cui, W. Chen, and D. G. Ivey, Mananese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev., 40, 1697-1721 (2011).   DOI
22 J.-M. Jeong, K. G. Lee, S.-J. Chang, J. W. Kim, Y.-K. Han, S. J. Lee, and B. G. Choi, Ultrathin sandwich-like $MoS_2$@N-doped carbon nanosheets for anodes of lithium ion batteries, Nanoscale, 7, 324-329 (2015).   DOI
23 J. Yan, Q. Wang, T. Wei, and Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities, Adv. Energy Mater., 4, 1300816-1300859 (2014).   DOI
24 Y. Gogotsi, Energy storage wrapped up, Nature, 509, 568-570 (2014).   DOI