Browse > Article
http://dx.doi.org/10.14478/ace.2016.1050

Study on the Thermal Stability of PEDOT/PSS Film Hybrided with Graphene Oxide  

Choi, Jong Hyuk (Department of Polymer Engineering, College of Engineering, Suwon University)
Park, Wan-Su (Department of Polymer Engineering, College of Engineering, Suwon University)
Lee, Seong Min (EverChemTech Co., Ltd.)
Chung, Dae-won (Department of Polymer Engineering, College of Engineering, Suwon University)
Publication Information
Applied Chemistry for Engineering / v.27, no.4, 2016 , pp. 402-406 More about this Journal
Abstract
In order to investigate the thermal stability of electro-conductive poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT/PSS), we have prepared films by casting PEDOT/PSS aqueous solution without using a binding material and measured surface resistances of the films while annealing at $200^{\circ}C$. Electrical properties of films were improved by annealing, and the maximum conductivity ($540S{\cdot}m^{-1}$) after annealing for 2 hrs was found to be approximately 3 times higher than that ($180S{\cdot}m^{-1}$) of the original film. The conductivities, however, dramatically decreased with an increase in annealing time and dissipated after 24 hrs of annealing. On the other hand, PEDOT/PSS films hybridized with graphene oxide (GO) displayed a salient improvement in conductivity by annealing, which was measured to be around $600S{\cdot}m^{-1}$ even after 30 hrs of annealing at $200^{\circ}C$. We tentatively conclude that hybridization with GO enhances the thermal stability of PEDOT/PSS.
Keywords
poly(3,4-ethylenedioxythiophene); poly(styrene sulfonate); film; graphene oxide; thermal stability;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 W. L. Zhang, B. J. Park, and H. J. Choi, Colloidal graphene oxide/ polyaniline nanocomposite and its electrorheology, Chem. Commun., 46, 5596-5598 (2010).   DOI
2 S. B. Lee, S. M. Lee, N. I. Park, S. H. Lee, and D. W. Chung, Preparation and characterization of conducting polymer nanocomposite with partially reduced graphene oxide, Synth. Met., 201, 61-66 (2015).   DOI
3 D. S. Perloff, Four-point sheet resistance correction factors for thin rectangular samples, Solid State Electron., 20, 681-687 (1977).   DOI
4 B. Fan, X. Mei, and J. Ouyang, Significant conductivity enhancement of conductive poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) film by adding anionic surfactants into polymer solution, Macromolecules, 41, 5971-5973 (2008).   DOI
5 J. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, Investigation of the effects of doping and post-deposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films, Adv. Funct. Mater., 15, 290-296 (2005).   DOI
6 Y. Kim, M. Shin, and H. Kim, Annealing temperature effect of hole-collecting polymeric nanolayer in polymer solar cells, Macromol. Res., 16, 185-188 (2008).   DOI
7 Y. Kim, A. M. Ballantyne, J. Nelson, and D. D. C. Bradley, Effects of thickness and thermal annealing of the PEDOT:PSS layer on the performance of polymer solar cells, Org. Electron., 10, 205-209 (2009).   DOI
8 T. P. Nguyen, P. Le Rendu, P. D. Long, and S. A. De Vos, Chemical and thermal treatment of PEDOT:PSS thin films for use in organic light emitting diodes, Surf. Coat. Technol., 180-181, 646-649 (2004).   DOI
9 E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, Thermal Degradation Mechanisms of PEDOT:PSS, Org. Electron., 10, 61-66 (2009).   DOI
10 G. Greczynski, T. Kugler, and W. R. Salaneck, Characterization of The PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy, Thin Solid Films, 354, 129-135 (1999).   DOI
11 N. I. Park, S. B. Lee, S. M. Lee, and D. W. Chung, Preparation and characterization of PEDOT/PSS hybrid with graphene derivative wrapped by water-soluble polymer, Appl. Chem. Eng., 25, 581-585 (2014).   DOI
12 J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, and J. Shinar, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) film through solvent treatment, Polymer, 45, 8443-8450 (2004).   DOI
13 E. Tamburri, S. Sarti, S. Orlanducci, M. L. Terranova, and M. Rossi, Study of PEDOT conductive polymer film by admittance measurements, Mater. Chem. Phys., 125, 397-404 (2011).   DOI
14 J. Zhang, L. Gao, J. Sun, Y. Liu, Y. Wang, and J. Wang, Incorporation of single-walled carbon nanotubes with PEDOT/PSS in DMSO for The production of transparent conducting films, Diam. Relat. Mater., 22, 82-87 (2012).   DOI
15 A. Keawprajak, W. Koetniyom, P. Piyakulawat, K. Jiramitmongkon, S. Pratontep, and U. Asawapirom, Effects of tetramethylene sulfone solvent additives on conductivity of PEDOT:PSS film and performance of polymer photovoltaic cells, Org. Electron., 14, 402-410 (2013).   DOI
16 K. Y. Jo, T. M. Lee, H. J. Choi, J. H. Park, D. J. Lee, D. W. Lee, and B. S. Kim, Stable aqueous dispersion of reduced graphene nanosheets via non-covalent functionalization with conducting polymers and application in transparent electrodes, Langmuir, 27, 2014-2018 (2011).   DOI
17 D. Sun, L. Jin, Y. Chen, J. R. Zhang, and J. J. Zhu, Microwave assisted In situ synthesis of graphene/PEDOT hybrid and its application in supercapacitors, Chem. Plus Chem., 78, 227-234 (2013).
18 Y. H. Yoon, S. H. Seo, G. Y. Kim, and H. Y. Lee, Atomic dopants involved in the structural evolution of thermally graphitized graphene, Chem. Eur. J., 18, 13466-13472 (2012).   DOI
19 C. K. Chua and M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint, Chem. Soc. Rev., 43, 291-312 (2014).   DOI
20 J. W. Choi, S. B. Lee, S. M. Lee, W. S. Park, and D. W. Chung, Effect of amine compounds on electrical properties of graphene oxide films made by bar coating, Appl. Chem. Eng., 26, 331-335 (2015).   DOI
21 F. Louwet, L. Groenendaal, J. Dhaen, J. Manca, J. Van Luppen, E. Verdonck, and L. Leenders, PEDOT/PSS: Synthesis, characterization, properties and applications‚ Synth. Met., 135, 115-117 (2003).
22 H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, J. Chem. Soc. Chem. Comm., 578-580 (1977).
23 J. H. Hong and K. S. Jang, Synthesis and characterization of soluble polypyrrole with high conductivity, J. Korean Ind. Eng. Chem., 18, 234-238 (2007).
24 Y. H. Lee, Y. W. Ju, H. R. Jung, Y. I. Huh, and W. J. Lee, Preparation of polypyrrole/sulfonated-SEBS conducting composites through an inverted emulsion pathway, J. Ind. Eng. Chem., 11, 550-555 (2005).
25 J. M. Lee and K. H. Lim, Electrochemical synthesis of conducting polythiophene in an ultrasonic field, J. Ind. Eng. Chem., 6, 157-162 (2000).
26 H. Munstedt, Ageing of electrically conducting organic materials, Polymer, 29, 296-302 (1988).   DOI
27 L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future‚ Adv. Mater., 12, 481-494 (2000).   DOI
28 K. R. Kim, S. H. Oh, H. B. Kim, J. P. Jeun, and P. H. Kang, Water-soluble conjugated polymer and graphene oxide composite used as an efficient hole-transporting layer for organic solar cells, Polymer(Korea), 38, 38-42 (2014).
29 Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Muller-Meskamp, and K. Leo, Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells, Adv. Funct. Mater., 21, 1076-1081 (2011).   DOI
30 J. C. Yu, J. I. Jang, B. R. Lee, G. W. Lee, J. T. Han, and M. H. Song, Highly efficient polymer-based optoelectronic devices using PEDOT:PSS and a GO composite layer as a hole transport layer, ACS Appl. Mater. Interfaces, 6, 2067-2073 (2014).   DOI
31 Q. Feng, K. Du, Y. K. Li, P. Shi, and Q. Feng, Effect of annealing on performance of PEDOT:PSS/n-GaN Schottky solar cells, Chin. Phys. B, 23, 077303 (2014).   DOI
32 B. Friedel, P. E. Keivanidis, T. J. K. Brenner, A. Abrusci, C. R. McNeill, R. H. Friend, and N. C. Greenham, Effects of layer thickness and annealing of PEDOT:PSS layers in organic photodetectors, Macromolecules, 42, 6741-6747 (2009).   DOI
33 L. S. C. Pingree, B. A. MacLeod, and D. S. Ginger, The changing face of PEDOT:PSS films: Substrate, bias, and processing effects on vertical charge transport, J. Phys. Chem. C, 112, 7922-7927 (2008).   DOI
34 K. E. Aasmundtveit, E. J. Samuelsen, L. A. A. Pettersson, O. Inganas, T. Johansson, and R. Feidenhans'I, Structure of thin films of poly(3,4-ethylenedioxythiophene), Synth. Met., 101, 561-564 (1999).   DOI
35 J. Huang, P. F. Miller, J. C. de Mello, A. J. de Mello, and D. D. C. Bradley, Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films, Synth. Met., 139, 569-572 (2003).   DOI
36 S. Kim, I. Do, and L. T. Drazal, Thermal stability and dynamic mechanical behavior of exfoliated graphite nanoplatelets-LLDPE nanocomposites, Polym. Compos., 31, 755-761 (2010).
37 I. H. Kim and Y. G. Jeong, Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity, J. Polym. Sci. B Polym. Phys., 48, 850-858 (2010).   DOI
38 S. Ansari and E. P. Giannelis, Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites, J. Polym. Sci. B Polym. Phys., 47, 888-897 (2009).   DOI
39 Z. Xu and C. Gao, In situ Polymerization approach to graphene-reinforced Nylon-6 composites, Macromolecules, 43, 6716-6723 (2010).   DOI