Browse > Article
http://dx.doi.org/10.14478/ace.2016.1069

Upgrading of Heavy Oil or Vacuum Residual Oil : Aquathermolysis and Demetallization  

Lee, Hoo-Cheol (Department Chemical Engineering, Hoseo University)
Park, Seung-Kyu (Department Chemical Engineering, Hoseo University)
Publication Information
Applied Chemistry for Engineering / v.27, no.4, 2016 , pp. 343-352 More about this Journal
Abstract
It has been estimated that the Earth has nearly 1.688 trillion barrels of crude oil, which will last 53.3 years at current extraction rates. The organization of petroleum exporting countries (OPEC) group forecasted that the oil prices will not jump to triple-digit territory within a decade, but it can quickly increase as the political issue for reducing oil production appears. With the potential of serious shortage of conventional hydrocarbon resources, the heavy oil, one of unconventional hydrocarbon resources including oil sand and natural bitumen has attracted worldwide interest. The heavy oil contains heavy hydrocarbon compounds, commonly called as resins and asphaltenes, with long carbon chains more than sixty carbon atoms. The high content of heavier fraction corresponds with the high molecular weight, viscosity, and boiling point. Physicochemical properties of residues from vacuum distillation of conventional oil, referred to as vacuum residues (VR) were similar to those of heavy oil. For the development of heavy oil reserves, reducing the heavy oil viscosity is the most important. In this article, commercially employed aquathermolysis processes and their application to VR upgrading are discussed. VR contains transition metals such as Ni and V, but these metals should be eliminated in advance for further refining. Recent studies on demetallization technologies for VR are also reviewed.
Keywords
aquathermolysis; viscosity; demetallization; Ni; V; porphyrins;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. Ban, J. L. Arellano, R. F. Aguilera, and M. Tallet, OPEC 2015 World Oil Outlook, 1-361 (2015).
2 US Ministry of Defense, Global Strategic Trends-Out to 2045, Fifth Edition (2014).
3 R. F. Meyer, E. D. Attanasi, and P. A. Freeman, Heavy Oil and Natural Bitumen Resources in Geological Basins of the World, US Department of Interior & US Geological Survey Open File-Report 2007-1084 (2007).
4 British Petroleum, BP Statistical Review of World Energy, June (2015).
5 L. Hughes and J. Rudolph, Future world oil production: growth, plateau, or peak?, Curr. Opin. Environ. Sustain., 3, 335-234 (2011).   DOI
6 O. Muraza and A. Galadima, Aquathermolysis of heavy oil: A review and perspective on catalyst development, Fuel, 157, 219-231 (2015).   DOI
7 N. L. Madureira, Key Concepts in Energy, pp. 125-126, Springer International Publishing (2014).
8 S. Sorrell, R. Miller, R. Bentley, and J. Speirs, Oil futures: A comparison of global supply forecasts, Energy Policy, 38, 4990-5003 (2010).   DOI
9 V. Lam, G. Li, C. Song, J. Chen, C. Fairbridge, R. Hui, and J. Zhang, A review of electrochemical desulfurization technologies for fossil fuels, Fuel Process. Technol., 98, 30-38 (2012).   DOI
10 World Energy Council, 2010 Survey of Energy Resources, 123-150 (2010).
11 A. Bera and T. Babadagli, Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review, Appl. Energy, 151, 206-226 (2015).   DOI
12 O. Muraza, Hydrous pyrolysis of heavy oil using solid acid minerals for viscosity reduction, J. Anal. Appl. Pyrolysis, 114, 1-10 (2015).   DOI
13 H. R. Hao, H. J. Su, G. Chen, J. R. Zhao, and L. Hong, Viscosity reduction of heavy oil by aquathermolysis with coordination complex at low temperature, The Open Fuels Energy Sci. J., 8, 93-98 (2015).   DOI
14 P. R. Kapadia, M. S. Kallos, and I. D. Gates, A review of pyrolysis, aquathermolysis, and oxidation of Athabasca bitumen, Fuel Process. Technol., 131, 270-289 (2015).   DOI
15 M. Khalil, R. L. Lee, and N. Liu, Hematite nanoparticles in aquathermolysis: A desulfurization study of thiophene, Fuel, 145, 214-220 (2015).   DOI
16 H. C. Kim, W. J. Jeong, W. C. Lee, and S. K. Park, Demetallization by MCM-48 from asphaltene of vacuum residual oils: Analysis by UV-visible spectroscopy, Asian J. Chem., 27, 4288-4290 (2015).   DOI
17 L. Lin, F. Zeng, and Y. Gu, A circular solvent chamber model for simulating the VAPEX heavy oil recovery process, J. Pet. Sci. Eng., 118, 27-39 (2014).   DOI
18 H. H. Kiasari, A. H. Sarapardeh, S. Mighani, A. H. Mohammadi, and B. S. Sola, Effect of operational parameters on SAGD performance in a dip heterogeneous fractured reservoir, Fuel, 122, 82-93 (2014).   DOI
19 Y. H. Shokrlu, Y. Maham, X. Tan, T. Babadagli, and M. Gray, Enhancement of the efficiency of in situ combustion technique for heavy-oil recovery by application of nickel ions, Fuel, 105, 397-407 (2013).   DOI
20 N. Mosavat and F. Torabi, Experimental evaluation of the performance of carbonated water injection (CWI) under various operating conditions in light oil systems, Fuel, 123, 274-284 (2014).   DOI
21 D. W. Zhao, J. Wang, and I. D. Gates, Optimized solvent-aided steam-flooding strategy for recovery of thin heavy oil reservoirs, Fuel, 112, 50-59 (2013).   DOI
22 F. R. Ahmadun, A. Pendashteh, L. C. Abdullah, D. R. A. Biak, S. S. Madaeni, and Z. Z. Abidin, Review of technologies for oil and gas produced water treatment, J. Hazard. Mater., 170, 530-551 (2009).   DOI
23 J. Peng, G. Q. Tang, and A. R. Kovscek, Oil chemistry and its impact on heavy oil solution gas drive, J. Pet. Sci. Eng., 66, 47-59 (2009).   DOI
24 R. C. K. Wong and B. B. Maini, Gas bubble growth in heavy oil-filled sand packs under undrained unloading, J. Pet. Sci. Eng., 55, 259-270 (2007).   DOI
25 J. Wang, Y. Z. Yuan, L. Zhang, and R. Wang, The influence of viscosity on stability of foamy oil in the process of heavy oil solution gas drive, J. Pet. Sci. Eng., 66, 69-74 (2009).   DOI
26 D. Yuan, J. Hou, Z. Song, Y. Wang, M. Luo, and Z. Zheng, Residual oil distribution characteristic of fractured-cavity carbonate reservoir after water flooding and enhanced oil recovery by $N_2$ flooding of fractured-cavity carbonate reservoir, J. Pet. Sci. Eng., 129, 15-22 (2015).   DOI
27 J. B. Hyne, J. W. Greidanus, J. D. Tyrer, et al., In: 2nd Int. Conf. "The Future of Heavy Crude and Tar Sands." Caracas, Venezuela, 7-17 February 1982, pp. 404-411, McGraw Hill, New York (1984).
28 Y. H. Shokrlu and T. Babadagli, Viscosity reduction of heavy oil/bitumen using micro-and nano-metal particles during aqueous and non-aqueous thermal applications, J. Pet. Sci. Eng., 119, 210-220 (2014).   DOI
29 J. G. Reynolds, Removal of nickel and vanadium from heavy crude oils by exchange reactions, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem., 49, 79-80 (2004).
30 M. F. Ali and S. Abbas, A review of methods for the demetallization of residual fuel oils, Fuel Process. Technol., 87, 573-584 (2006).   DOI
31 F. Iskandar, E. Dwinanto, M. Abdullah, Khairurrijal, and O. Muraza, Viscosity reduction of heavy oil using nanocatalyst in aquathermolysis reaction, KONA Powder Part. J., 33, 3-16 (2016).   DOI
32 F. Zhao, X. Wang, Y. Wang, and Y. Shi, The catalytic aquathermolysis of heavy oil in the presence of a hydrogen donor under reservoirs conditions, J. Chem. Pharm. Res., 6(5), 2037-2041 (2014).
33 S. K. Maity, J. Ancheyta, and G. Marroquin, Catalytic aquathermolysis used for viscosity reduction of heavy crude oils: A review, Energy Fuels, 24, 2809-2816 (2010).   DOI
34 Y. Wang, Y. Chen, J. He, P. Li, and C. Yang, Mechanism of catalytic aquathermolysis: Influences on heavy oil by two types of efficient catalytic ions: $Fe^{3+}$ and $Mo^{6+}$, Energy Fuels, 24, 1502-1510 (2010).   DOI
35 C. Wu, G. L. Lei, C. J. Yao, K, J. Sun, P. Y. Gai, and Y. B. Cao, Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst, J. Fuel Chem. Technol., 38, 684-690 (2010).   DOI
36 H. X. Xu and C. S. Pu, Experimental study of heavy oil underground aquathermolysis using catalyst and ultrasonic, J. Fuel. Chem. Technol., 39, 606-610 (2011).   DOI
37 H. Wang, Y. Wu, L. He, and Z. Liu, Supporting tungsten oxide on zirconia by hydrothermal and impregnation methods and its use as a catalyst to reduce the viscosity of heavy crude oil, Energy Fuels, 26, 6518-6527 (2012).   DOI
38 C. Ovalles, P. R. Unda, J. Bruzual, and A. Salazar, Upgrading of extra-heavy crude using hydrogen donor under steam injection conditions: Characterization by pyrolysis GC-MS of the asphaltenes and effects of a radical initiator, Am. Chem. Soc. Div. Fuel. Chem., 48, 59-60 (2003).
39 P. Jing, Q. Li, M. Han, D. Sun, L. Jia, and W. Fang, Effect of $Ni^{2+}$ and $Sn^{2+}$ modified $SO_4\;^{2-}$/$ZrO_2$ solid super-acid catalysts on visbreaking of heavy petroleum oil, Shiyou Huagong / Petrochem. Technol., 36, 237-241 (2007).
40 D. H. Freeman and T. C. O'Haner, Derivative spectrophotometry of petroporphyrins, Energy Fuels, 4, 688-694 (1990).   DOI
41 N. N. Petrukhina, G. P. Kayukova, G. V. Romanov, B. P. Tumanyan, L. E. Foss, I. P. Kosachev, R. Z. Musin, A. I. Ramazanova, and A. V. Vakhin, Conversion processes for high-viscosity heavy crude oil in catalytic and noncatalytic aqiathermolysis, Chem. Technol. Fuels Oils, 50, 315-326 (2014).   DOI
42 B. P. Tumanyan, G. V. Romanov, D. K. Nurgaliev, G. P. Kayukova, and N. N. Petrukhina, Promising aspects of heavy oil and native asphalt conversion under field conditions, Chem. Technol. Fuels Oils, 50, 185-188 (2014).   DOI
43 M. Bahram and P. Kobra, Determination of Vanadyl Porphyrins by Liquid-liquid microextraction and nano-baskets of p-tert-Calix[4 ]arene bearing di-[N-(X)sulfonye carboxamide] and di-(1-propoxy) in ortho-cone conformation, Chem. Res. Chin. Univ., 28(5), 807-813 (2012).
44 J. N. R. Olvera, G. J. Gutierrez, J. A. R. Serrano, A. M. Ovando, V. G. Febles, and L. D. B. Arceo, Use of unsupported, mechanically alloyed NiWMoC nanocatalyst to reduce the viscosity of aquathermolysis reaction of heavy oil, Catal. Commun., 43, 131-135 (2014).   DOI
45 Y. Chen, C. Yang, and Y. Wang, Gemini catalyst for catalytic aquathermolysis of heavy oil, J. Anal. Appl. Pyrolysis, 89, 159-165 (2010).   DOI
46 M. A. Banares and J. L. G. Fierro, Selective oxidation of methane to formaldehyde on supported molybdate catalysts, Catal. Letters, 17, 205-211 (1993).   DOI
47 J. S. F. Pereira, D. P. Moraes, F. G. Antes, L. O. Diehl, M. F. P. Santos, R. C. I. Guimaraes, T. C. O. Fonseca, V. L. Dressler, and E. M. M. Flores, Determination of metals and metalloids in light and heavy crude oil by ICP-MS after digestion by microwave-induced combustion, Microchem. J., 96, 4-11 (2010).   DOI
48 Y. Chen, T. Wang, J. Lu, and C. Wu, The viscosity reduction of nano-keggin-$K_3PMo_{12}O_{40}$ in catalytic aquathermolysis of heavy oil, Fuel, 88, 1426-1434 (2009).   DOI
49 H. Fan, Y. Zhang, and Y. Lin, The catalytic effects of minerals on aquathermolysis of heavy oils, Fuel, 83, 2035-2039 (2004).   DOI
50 S. Merissa, P. Fitriani, F. Iskandar, M. Abdullah, and Khairurrijal, Preliminary study of natural zeolite as catalyst for decreasing the viscosity of heavy oil, Padjadjaran International Physics Symposium, PIPS-2013, 131-134 (2013).
51 A. S. Junaid, W. Wang, C. Street, M. Rahman, M. Gersbach, S. Zhou, W. McCaffrey, and S. M. Kuznicki, Viscosity reduction and upgrading of Athabasca oilsands bitumen by natural zeolite cracking, Int. J. Chem. Mol. Nucl. Mater. Metallur. Eng., 4, 609-614 (2010).
52 O. Korkuna, R. Leboda, J. S. Zieba, T. Vrublevska, V. M. Gunko, and J. Ryczkowski, Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite, Microporous Mesoporous Mater., 87, 243-254 (2006).   DOI
53 R. N. Magomedov, A. Z. Popova, T. A. Maryutina, K. M. Kadiev, and S. N. Khadzhiev, Current status and prospects of demetallization of heavy petroleum feedstock (Review), Pet. Chem., 55, 267-290 (2015).
54 K. A. Gould, Oxidative demetallization of petroleum asphaltenes and residua, Fuel, 59, 733-736 (1980).   DOI
55 A. Atesa, G. Azimic, K. H. Choi, W. H. Green, and M. T. Timko, The role of catalyst in supercritical water desulfurization, Appl. Catal. B, 147, 144-155 (2014).   DOI
56 M. Sattarin, H. Modarresi, H. Talachi, and M. Teymori, Solvent deasphalting of vacuum residue in a bench-scale unit, Pet. Coal, 48(3), 14-19 (2006).
57 H. Jo, S. G. Moun, Y. M. Jo, and Y. Chung, A patent analysis on impurity removal and catalysts for crude oil purification, Clean Technol., 16, 1-11 (2010).
58 A. K. Lee, A. M. Murray, and J. G. Reynolds, Metallopetroporphyrins as process indicators: Separation of petroporphyrins in green river oil shale pyrolysis products, Fuel Sci. Technol. Int., 13, 1081-1097 (1995).   DOI
59 A. Treibs, On the chromophores of porphyrin systems, Ann. N. Y. Acad. Sci., 206, 97-115 (1973).   DOI
60 H. Fukuyama, S. Teraia, M. Uchidab, J. L. Cano, and J. Ancheyta, Active carbon catalyst for heavy oil upgrading, Catal. Today, 98, 207-215 (2004).   DOI
61 P. Bruggemann, F. Baitalow, P. Seifert, B. Meyer, and H. Schlichting, Behaviour of heavy metals in the partial oxidation of heavy fuel oil, Fuel Process. Technol., 91, 211-217 (2010).   DOI
62 A. J. Varma, S. V. Deshpande, and J. F. Kennedy, Metal complexation by chitosan and its derivatives: a review, Carbohydr. Polym., 55, 77-93 (2004).   DOI
63 M. Soylak, A. U. Karatepe, L. Elci, and M. Dogan, Column preconcentration/ separation and atomic absorption spectrometric determinations of some heavy metals in table salt samples using Amberlite XAD-1180, Turk. J. Chem., 27, 235-242 (2003).
64 L. Li, N. Tang, Y. Wang, W. Cen, J. Liu, and Y. Zhou, Investigation of hexagonal mesoporous silica-supported composites for trace moisture adsorption, Nano Scale Res. Letters, 10, 1-7 (2015).   DOI
65 S. Wang, X. Xu, J. Yang, and J. Gao, Effect of the carboxymethyl chitosan on removal of nickel and vanadium from crude oil in the presence of microwave irradiation, Fuel Process. Technol., 92, 486-492 (2011).   DOI
66 I. Lukec, K. S. Bionda, and D. Lukec, Prediction of sulphur content in the industrial hydrotreatment process, Fuel Process. Technol., 89, 292-300 (2008).   DOI
67 S. B. Seo, T. Kajiuchi, D. I. Kim, S. H. Lee, and H. K. Kim, Preparation of water soluble chitosan blendmers and their application to removal of heavy metal ions from wastewater, Macromol. Res., 10, 103-107 (2002).   DOI
68 J. Luan, A. Li, T. Su, and X. Li, Translocation and toxicity assessment of heavy metals from circulated fluidized-bed combustion of oil shale in Huadian, China, J. Hazard. Mater., 166, 1109-1114 (2009).   DOI
69 N. N. Nassar, M. M. Husein, and P. P. Almao, Ultradispersed particles in heavy oil: Part II, sorption of $H_2$S(g), Fuel Process. Technol., 91, 169-174 (2010).   DOI
70 H. O. Bakare, A. O. Esan, and O. M. Olabemiwo, Characterisation of Agbabu natural bitumen and its fractions using Fourier transform infrared spectrometry, Chem. Mater. Res., 7, 1-11 (2015).
71 Y. Yamada, S. Matsumoto, H. Kakiyama, and H. Honda, Removal of heavy metal contained in petroleum heavy oil, Japanese Patent 54-110206 (1979).