Browse > Article
http://dx.doi.org/10.14478/ace.2016.1042

Effect of E-beam Radiation with Acid Drenching on Surface Properties of Pitch-based Carbon Fibers  

Jung, Min-Jung (Department of Applied Chemical Engineering, Chungnam National University)
Park, Mi-Seon (Department of Applied Chemical Engineering, Chungnam National University)
Lee, Sangmin (Department of Applied Chemical Engineering, Chungnam National University)
Lee, Young-Seak (Department of Applied Chemical Engineering, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.27, no.3, 2016 , pp. 319-324 More about this Journal
Abstract
In this study, pitch-based carbon fibers in the acid were radiated with an electron beam to modify their surface, and surface changes were investigated according to each treatment conditions. Nitric acid and hydrogen peroxide were used as a drenched acidic solution and an electron beam dose was set to 200 and 400 kGy. The use of nitric acid introduced more oxygen functional groups on carbon fiber surfaces than that of using hydrogen peroxide, and also introduced nitrogen functional groups into the carbon fiber surface. In addition, oxygen functional groups introduced on carbon fiber surface increased as the electron beam dose increased due to the fact that the oxidizing material can be easily formed by e-beam radiation in nitric acid than the hydrogen peroxide, and also the higher energy electron beam dose can help forming more oxidizing materials. Moreover, the generation of C=O functional groups was favorable when using nitric acid because oxidizing C-OH functional groups to the C=O functional groups mainly occurred by $NO_2$ radicals generated by the electron beam radiation in a nitric acid solution.
Keywords
E-beam radiation; hydrogen peroxide; nitric acid; surface properties; carbon fibers;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 S. Lim, D. Jung, S. H. Yoon, and I. Mochida, Carbon materials as catalysts, Carbon Lett., 9, 47-60 (2008).   DOI
2 S. H. Han, H. J. Oh, and S. S. Kim, Evaluation of mechanical property of carbon fiber/polypropylene composite according to carbon fiber surface treatment, Trans. Korean Soc. Mech. Eng. A, 37, 791-796 (2013).   DOI
3 J. S. Lee and T. J. Kang, Effect of Surface Treatment of Carbon Fiber on the Impact Property of Carbon/Carbon Composites, J. Korean Fiber Soc., 34, 884-890 (1997).
4 P. Hancock and R. C. Cuthbertson, The effect of fibre length and interfacial bond in glass fibre-epoxy resin composites, J. Mater. Sci., 5, 762-768 (1970).   DOI
5 C. K. Moon, Y. S. Um, H. H. Cho, J. O. Lee, and T. W. Park, The effect of surface-treatment of fiber on the mechanical properties of carbon fiber reinforced plastics. 2: The effect of surface-treatment on the interfecial shear strength, Polym. Korea, 14, 630-637 (1990).
6 L. Di Landro and M. Pegoraro, Carbon fibre thermoplastic matrix adhesion, J. Mater. Sci., 22, 1980-1986 (1987).   DOI
7 S. J. Park and B. J. Kim, Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior, Mater. Sci. Eng. A-Struct. Mater., 408, 269-273 (2005).   DOI
8 H. Yuan, C. Wang, S. Zhang, and X. Lin, Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite, Appl. Surf. Sci., 259, 288-293 (2012).   DOI
9 S. J. Park, M. K. Seo, and K. Y. Rhee, Studies on mechanical interfacial properties of oxy-fluorinated carbon fibers-reinforced composites, Mater. Sci. Eng. A-Struct. Mater., 356, 219-226 (2003).   DOI
10 M. Delamar, G. Desarmot, O. Fagebaume, R. Hitmi, J. Pinsonc, and J. M. Saveant, Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites, Carbon, 35, 801-807 (1997).   DOI
11 J. Li, The effect of surface modification with nitric acid on the mechanical and tribological properties of carbon fiber-reinforced thermoplastic polyimide composite, Surf. Interface Anal., 41, 759-763 (2009).   DOI
12 M. Paligova, J. Vilcakova, P. Saha, V. Kresalek, J. Stejskal, and O. Quadrat, Electromagnetic shielding of epoxy resin composites containing carbon fibers coated with polyaniline base, Physica A, 335, 421-429 (2004).   DOI
13 C. U. Pittman Jr, G. R. He, B. Wu, and S. D. Gardner, Chemical modification of carbon fiber surfaces by nitric acid oxidation followed by reaction with tetraethylenepentamine, Carbon, 35, 317-331 (1997).   DOI
14 J. Li, Interfacial studies on the $O_{3}$ modified carbon fiber-reinforced polyamide 6 composites Appl. Surf. Sci., 255, 2822-2824 (2008).   DOI
15 J. Y. Sohn, J. S. Lim, S. J. Gwon, J. H. Shin, J. H. Choi, and Y. C. Nho, A Study on the Improvement of the thermal stability of a commercial polyethylene separator for lithium secondary battery by an electron beam irradiation, Polym. Korea, 32, 598-602 (2008).
16 J. Jang and H. Yang, The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites, J. Mater. Sci., 35, 2297-2303 (2000).   DOI
17 Y. Xie and P. M. A. Sherwood, X-ray photoelectron-spectroscopic studies of carbon fiber surfaces. part XII: The effect of microwave plasma treatment on pitch-based carbon fiber surfaces, Appl. Spectrosc., 44, 797-803 (1990).   DOI
18 M. L. Sham, J. Li, P. Ma, and J. K. Kim, Cleaning and functionalization of polymer surfaces and nanoscale carbon fillers by UV/ozone treatment: A review, J. Compos. Mater., 43, 1537-1564 (2009).   DOI
19 A. F. Michels, P. A. Soave, J. Nardi, P. L. G. Jardim, S. R. Teixeira, D. E. Weibel, and F. Horowitz, Adjustable, (super)hydrophobicity by e-beam deposition of nanostructured PTFE on textured silicon surfaces, J. Mater. Sci., 51, 1316-1323 (2016).   DOI
20 H. Khan, B. Gahfoor, M. S. Mehmood, M. Ahmad, T. Yasin, and M. Ikram, Spectroscopic and sub optical band gap properties of e-beam irradiated ultra-high molecular weight polyethylene, Radiat. Phys. Chem., 117, 172-177 (2015).   DOI
21 D. Teweldebrhan and A. A. Balandin, Modification of graphene properties due to electron-beam irradiation, Appl. Phys. Lett., 94, 013101 (2009).   DOI
22 S. Gupta, R. J. Patel, N. Smith, R. E. Giedd, and D. Hui, Room temperature dc electrical conductivity studies of electron-beam irradiated carbon nanotubes, Diam. Relat. Mater., 16, 236-242 (2007).   DOI
23 D. A. Armstrong, W. L. Waltz, and A. Rauk, Carbonate radical anion - Thermochemistry, Can. J. Chem., 84, 1614-1619 (2006).   DOI
24 K. H. Kim, M. S. Park, M. J. Jung, and Y. S. Lee, Influence of textural structure by heat-treatment on electrochemical properties of pitch-based activated carbon fiber, Appl. Chem. Eng., 26, 598-603 (2015).   DOI
25 D. R. Kauffman, D. C. Sorescu, D. P. Schofield, B. L. Allen, K. D. Jordan, and A. Star, Understanding the sensor response of metal-decorated carbon nanotubes, Nano Lett., 10, 958-963 (2010).   DOI
26 S. H. Kim Y. J. Noh, S. N. Kwon, B. N. Kim, B. C. Lee, S. Y. Yang, C. H. Jung, and S. I. Na, Efficient modification of transparent graphene electrodes by electron beam irradiation for organic solar cells, J. Ind. Eng. Chem., 26, 210-213 (2015).   DOI
27 I. Arslan-Alaton, A review of the effects of dye-assisting chemicals on advanced oxidation of reactive dyes in wastewater, Color. Technol., 119, 345-353 (2003).   DOI
28 S. Karthikeyan, K. Viswanathan, R. Boopathy, P. Maharaja, and G. Sekaran, Three dimensional electro catalytic oxidation of aniline by boron doped mesoporous activated carbon, J. Ind. Eng. Chem., 21, 942-950 (2015).   DOI
29 K. Artyushkova, S. Levendosky, P. Atanassov, and J. Fulghum, XPS structural studies of nano-composite non-platinum electrocatalysts for polymer electrolyte fuel cells, Top. Catal., 46, 263-275 (2007).   DOI
30 M. J. Jung, E. Jeong, J. W. Lim, S. I. Lee, and Y. S. Lee, Physico-chemical surface modification of activated carbon by oxyfluorination and its electrochemical characterization, Colloids Surf. A-Physicochem. Eng. Asp., 389, 274-280 (2011).   DOI
31 S. J. Park, J. S. Oh, and D. H. Suh, Influence of ozone treatment of carbon fibers on GIIC of carbon fiber-reinforced composites, Appl. Chem. Eng., 14, 586-591 (2003).
32 R. Franca, D. A. Mbeh, T. D. Samani, C. Tien, M. A. Mateescu, L. Yahia, and E. Sacher, The effect of ethylene oxide sterilization on the surface chemistry and in vitro cytotoxicity of several kinds of chitosan, J. Biomed. Mater. Res. B, DOI: 10.1002/jbmb.32964.   DOI
33 I. A. Shkrob, T. W. Marin, S. D. Chemerisov, and J. F. Wishart, Radiation and radical chemistry of $NO_{3}^{-}$, $HNO_{3}$, and dialkylphosphoric acids in room-temperature ionic liquids, J. Phys. Chem. B, 115, 10927-10942 (2011).   DOI
34 D. Georgiou, P. Melidis, A. Aivasidis, and K. Gimouhopoulos, Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide, Dyes Pigm., 52, 69-78 (2002).   DOI
35 K. Ma, P. Chen, B. Wang, G. Cui, and X. Xu, A study of the effect of oxygen plasma treatment on the interfacial properties of carbon fiber/epoxy composites, J. Appl. Polym. Sci., 118, 1606-1614 (2010).
36 T. Ramanathan, A. Bismarck, E. Schulz, and K. Subramanian, Investigation of the influence of acidic and basic surface groups on carbon fibres on the interfacial shear strength in an epoxy matrix by means of single-fibre pull-out test, Compos. Sci. Technol., 61, 599-605 (2001).   DOI