Browse > Article
http://dx.doi.org/10.14478/ace.2016.1033

Mechanical and Thermal Properties of Epoxy Composites Reinforced Fluorinated Illite and Carbon Nanotube  

Lee, Kyeong Min (Dept. of Chemical Eng. And Applied Chemistry, Chungnam National University)
Lee, Si-Eun (Dept. of Chemical Eng. And Applied Chemistry, Chungnam National University)
Kim, Min Il (Dept. of Chemical Eng. And Applied Chemistry, Chungnam National University)
Kim, Hyeong Gi (Korea Fire Safety Association)
Lee, Young-Seak (Dept. of Chemical Eng. And Applied Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.27, no.3, 2016 , pp. 285-290 More about this Journal
Abstract
To improve properties of epoxy composites, surfaces of the illite and carbon nanotube (CNT) were treated by fluorine gas. The fluorinated illite and CNT were then characterized by X-ray photoelectron microscopy (XPS) and the mechanical and thermal properties of their composites were evaluated. The tensile and impact strengths and thermal stability of the composites increased upto about 59%, 18% and 124%, respectively compared to those of the neat epoxy. Improvements of mechanical and thermal properties in the composites were attributed that the fluorination of illite and carbon nanotube helps to enhance the dispersion in epoxy resin and interfacial interaction between them.
Keywords
fluorination; illite; carbon nanotube; epoxy composites;
Citations & Related Records
Times Cited By KSCI : 17  (Citation Analysis)
연도 인용수 순위
1 R. Das, S. L. Banerjee, R. Kumar, and P. P. Kundu, Development of sustainable elastomeric engineering nanocomposites from linseed oil with improved mechanical stability and thermally induced shape memory properties, J. Ind. Eng. Chem., 35, 388-399 (2016).   DOI
2 M. O. Ansan, S. P. Ansan, S. K. Yadav, T. Anwer, M. H. Cho, and F. Mohammad, Ammonia vapor sensing and electrical properties of fibrous multi-walled carbon nanotube/polyaniline nanocomposites prepared in presence of cetyl-trimethylammonium bromide, J. Ind. Eng. Chem., 20, 2010-2017 (2014).   DOI
3 F. Gardea and D. C. Lagoudas, Characterization of electrical and thermal properties of carbon nanotube/epoxy composites, Composites Part B, 56, 611-620 (2014).   DOI
4 T. Giang and J. Kim, Effect of backbone moiety in diglycidylether-terminated liquid crystalline epoxy on thermal conductivity of epoxy/alumina composite, J. Ind. Eng. Chem., 30, 77-84 (2015).   DOI
5 B. G. Son, T. S. Hwang, and D. C. Goo, Fire-retardation properties of polyurethane nanocomposite by filling inorganic nano flame retardant, Polym. Korea, 31, 404-409 (2007).
6 J. Bujdak, E. Hackett, and E. P. Giannelis, Effect of layer charge on the intercalation of poly(ethylene oxide) in layered silicates: Implications on nanocomposite polymer electrolytes, Chem. Mater., 12, 2168-2174 (2000).   DOI
7 S. J. Park, D. I. Seo, and C. Nah, Effect of acidic surface treatment of red mud on mechanical interfacial properties of epoxy/red mud nanocomposites, J. Colloid Interface Sci., 251, 225-229 (2002).   DOI
8 X. Zhao, J. Li, Y. Zhang, H. Dong, J. Qu, and Tao Qi, Preparation of nanosized anatase TiO2-coated illite composite pigments by $Ti(SO_{4})_{2}$ hydrolysis, Powder Technol., 271, 262-269 (2015).   DOI
9 E. Jeong, J. W. Lim, K. W. Seo, and Y. S. Lee, Effects of physicochemical treatments of illite on the thermo-mechanical properties and thermal stability of illite/epoxy composites, J. Ind. Eng. Chem., 17, 77-82 (2011).   DOI
10 J. H. Kim, T. D. Dao, and H. M. Jeong, Aluminum hydroxide-CNT hybrid material for synergizing the thermal conductivity of alumina sphere/thermoplastic polyurethane composite with minimal increase of electrical conductivity, J. Ind. Eng. Chem., 33, 150-155 (2016).   DOI
11 M. Y. Koo, H. C. Shin, W. S. Kim, and G. W. Lee, Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing, Carbon Lett., 15, 255-261 (2014).   DOI
12 W. S. Tung, V. Bird, R. J. Composto, N. Clarke, and K. I. Winey, Polymer chain conformations in CNT/PS nanocomposites from small angle neutron scattering, Macromolecules, 46, 5345-5354 (2013).   DOI
13 G. Mittal, V. Dhand, K. Y. Rhee, S. J. Park, and W. R. Lee, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites, J. Ind. Eng. Chem., 21, 11-25 (2015).   DOI
14 Y. Ganesan, H. Salahshoor, C. Peng, V. Khabashesku, J. Zhang, A. Care, N. Rahbar, and J. Lou, Fracture toughness of the sidewall fluorinated carbon nanotube-epoxy interface, J. Appl. Phys., 115, 224-305 (2014).
15 H. Maka, T. Spychaj, and M. Zenker, High performance epoxy composites cured with ionic liquids, J. Ind. Eng. Chem., 31, 192-198 (2015).   DOI
16 S. H. Park and J. Bae, Tailoring environment friendly carbonnanostructures by surfactant mediated interfacial engineering, J. Ind. Eng. Chem., 30, 1-9 (2015).   DOI
17 K. Yang, X. Huang, Y. Huang, L. Xie, and P. Jiang, Fluoro-@$PolymerBaTiO_{3}$ hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application, Chem. Mater., 25, 2327-2338 (2013).   DOI
18 E. Jeong and Y. S. Lee, Fluoro-illite/polypropylene composite fiber formation and their thermal and mechanical properties, Appl. Chem. Eng., 22, 467-472 (2011).
19 M. J. Jung, E. Jeong, and Y. S. Lee, The surface chemical properties of multi-walled carbon nanotubes modified by thermal fluorination for electric double-layer capacitor, Appl. Surf. Sci., 347, 250-257 (2015).   DOI
20 M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Adsorption characteristics of toluene gas using fluorinated phenol-based activated carbons, Appl. Chem. Eng., 26, 587-592 (2015).   DOI
21 M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Effects of the fluorination of activated carbons on the chromium ion adsorption, Appl. Chem. Eng., 26, 92-98 (2015).   DOI
22 H. R. Yu, E. Jeong, J. Kim, and Y. S. Lee, Influence of fluoro-illite on flame retardant property of epoxy complex, Polym. Korea, 35, 47-51 (2011).   DOI
23 O. K. Park, T. Jeevananda, N. H. Kim, S. I. Kim, and J. H. Lee, Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites, Scripta Mater., 60, 551-554 (2009).   DOI
24 Y. Hattori, N. Noguchi, F. Okino, H. Touhara, Y. Nakahigashi, S. Utsumi, H. Tanaka, H. Kanoh, and K. Kaneko, Defluorination-enhanced hydrogen adsorptivity of activated carbon fibers, Carbon, 45, 1391-1395 (2007).   DOI
25 S. G. Lee, J. C. Won, J. H. Lee, and K. Y. Choi, Flame retardancy of polypropylene/montmorillonite nanocomposites, Polym. Korea, 29, 248-252 (2005).
26 J. S. Im, S. K. Lee, S. J. In, and Y. S. Lee, Improved flame retardant properties of epoxy resin by fluorinated MMT/MWCNT additives, J. Anal. Appl. Pyrolysis, 89, 225-232 (2010).   DOI
27 C. D. Doyle, Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis, Anal. Chem., 33, 77-79 (1961).   DOI
28 S. H. Park, S. G. Lee, and S. H. Kim, Thermal decomposition behavior of carbon nanotube reinforced thermotropic liquid crystalline polymers, J. Appl. Polym. Sci., 122, 2060-2070 (2011).   DOI
29 S. E. Lee, S. Cho, and Y. S. Lee, Mechanical and thermal properties of MWCNT-reinforced epoxy nanocomposites by vacuum assisted resin transfer molding, Carbon Lett., 15, 32-37 (2014).   DOI
30 G. Mittal, V. Dhand, K. Y. Rhee, H. J. Kim, and D. H. Jung, Carbon nanotubes synthesis using diffusion and premixed flame methods: a review, Carbon Lett., 16, 1-10 (2015).   DOI
31 P. C. Ma, J. K. Kim, and B. Z. Tang, Effects of silane functionalization on the properties of cargon nanotube/epoxy nanocomposites, Compos. Sci. Technol., 67, 2965-2972 (2007).   DOI
32 J. Y. Kim and S. H. Kim, Influence of multiwall carbon nanotube on physical properties of poly(ethylene 2,6-naphthalate) nanocomposites, J. Polym. Sci., Part B: Polym. Phys., 44, 1062-1071 (2006).   DOI