Browse > Article
http://dx.doi.org/10.14478/ace.2016.1022

A Study on Processing and Physical Properties of Isoprene Rubber Involving Norbornene Dialkyl Ester  

Jeong, Hye-in (Department of Chemical Engineering and Materials Science, Sangmyung University)
Jo, Nam-chol (Department of Chemical Engineering and Materials Science, Sangmyung University)
Woo, Je-Wan (Department of Chemical Engineering and Materials Science, Sangmyung University)
Publication Information
Applied Chemistry for Engineering / v.27, no.3, 2016 , pp. 259-264 More about this Journal
Abstract
In this study, we applied six different norbornene dialkyl esters as a plasticizer to an isoprene rubber (IR) and evaluated replaceability of DEHP which is an endocrine disruptor. IR test sheets were prepared by blending IR, norbornene dialkyl ester, vulcanizing agent, etc. and processing properties of the IR were evaluated by measuring Toque, scorch time, cure time and mooney viscosity. Mechanical properties of IR test sheet including hardness, tensile strength, 100% modulus and elongation were also measured and the physical properties of norbornene dialkyl ester applied as a plasticizer were compared to those using DEHN. Both the maximum and minimum toque for the norbornene dialkyl ester as a plasticizer were similar to those of using DEHP. In addition, the scorch and cure time of the former were slightly longer than those of the latter. The mooney viscosity for the case of DEHN was slightly lower than that of the latter. DEHN was also superior to DEHP in terms of processing. The hardness and thermal properties of all IR test sheets were measured to be similar to each other. The linear alkyl chain of norbornene compounds also exhibited good tensile characteristics.
Keywords
norbornene dialkyl ester; plasticizers; isoprene Rubber (IR); processing; physical properties;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 A. Lindstrom and M. Hakkarainen, Environmentally friendly plasticizers for poly (vinyl chloride)-Improved mechanical properties and compatibility by using branched poly (butylene adipate) as a polymeric plasticizer, J. Appl. Polym. Sci., 100(3), 2180-2188 (2006).   DOI
2 J. S. Park and J. W. Woo, Eco-friendly esterification of dicarboxylic acid using recovered boric acid, Appl. Chem. Eng., 24(1), 72-76 (2013).
3 Y. W. Jin, J. S. Park, Y. S. Park, and J. W. Woo, The synthesis and characterization of nadic dialkyl-ester derivatives with trialkyl borate, Adv. Mater. Res., 415-417, 1849-1852 (2012).
4 S. H. Park, J. S. Park, T. W. Ko, Y. S. Park, and J. W. Woo, Esterification of 5-norbornene-2,3-dicarboxylic anhydride under titanium catalyst, Adv. Mater. Res., 634-638, 642-646 (2013).   DOI
5 J. S. Park, D. H. Yun, T. W. Ko, Y. S. Park, and J. W. Woo, Kinetic study of the Diels-Alder reaction of cyclopentadiene with bis(2-ethylhexyl) maleate, Adv. Mater. Res., 634-638, 541-545 (2013).   DOI
6 J. S. Park, H. C. Oh, Y. S. Park, and J. W. Woo, Synthesis of norbornene derivative using Diels-Alder reaction, Adv. Mater. Res., 421, 136-139 (2012).
7 D. H. Yun, T. W. Ko, and J. W. Woo, Study on Physical properties of PVC involving norbornene dialkyl ester, Appl. Chem. Eng., 25(6), 602-606 (2014).   DOI
8 H. W. Lee, D. S. Lee, and S. P. Hong, Vulcanization and mechanical properties of natural rubber/Liquid polyisoprene rubber blends, Polymer(Korea), 22(6), 966-971 (1998).
9 S. Lee and N. C. Nam, The Effects of cure system on vulcanization reaction constant and physical properties of rubber compounds, J. Korean Ind. Eng. Chem., 10(3), 419-426 (1999).
10 J. H. Ryou, C. H. Kim, and T. S. Oh, Study of the scorch/cure time relationships, Elastom. Compos., 31(1), 33-42 (1996).
11 P. H. McKinstry and R. R. Barnhart, Elastomeric composition having reduced Mooney viscosity, US Patent US4192790 A (1976).
12 S. H. Jang, W. S. Kim, Y. G. Kang, M. H. Han, and S. M. Chang, Study on mixing condition of the rubber composite containing functionalized S-SBR, silica and silane; II. Effect of mixing temperature and time, Elastom. Compos., 48(2), 103-113 (2013).   DOI
13 B. K. Min, D. R. Park, and W. S. Ahn, A study on Effects of vulcanization systems on cross-linking and degradation reactions of NR/CR blends using dynamic DSC and TGA, Korean Chem. Eng. Res., 47(2), 169-173 (2009).
14 J. S. Lee, Y. J. Yun, G. W. Chung, Y. C. Myoung, and S. Y. Lee, Analysis of phthalate esters in plastic products, J. Korean Ind. Eng. Chem., 14(5), 609-615 (2003).
15 D. H. Oh, D. J. Kim, and K. H. Seo, Effect of plasticizers on mechnical properties of PVC compounds, Elastomer, 34(4), 391-398 (1999).
16 N. Burgos and A. Jimenez, Degradation of poly (vinyl chloride) plasticized with non-phthalate plasticizers under sterilization conditions, Polym. Degrad. Stab., 94(9), 1473-1478 (2009).   DOI
17 S. H. Choi, M. S. Cho, D. J. Kim, D. H. Lee, S. J. Shim, J. D. Nam, and Y. K. Lee, Nanocomposite of ethyl cellulose using environment-friendly plasticizer, Polymer(Korea), 29(4), 399-402 (2005).
18 M. Ghisari and E. C. Bonefeld-Jorgensen, Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions, Toxicol. Lett., 189(1), 67-77 (2009).   DOI
19 J. Kastner, D. G. Cooper, M. Maric, P. Dodd, and V. Yargeau, Aqueous leaching of di-2-ethylhexyl phthalate and "green" plasticizers from poly (vinyl chloride), Sci. Total Environ., 432, 357-364 (2012).   DOI
20 Y. Ou, X. Ding, and L. Zhang, Synthesis and application of an alternative plasticizer Di (2 Ethylhexyl) 1, 2 cyclohexane dicarboxylate, J. Appl. Polym. Sci., 131(2), (2014).
21 S. C. Rastog, Gas chromatographic analysis of phthalate esters in plastic toys, Chromatographia, 47(11-12), 724-726 (1998).   DOI
22 S. Genay, C. Luciani, B. Decaudin, N. Kambia, T. Dine, N. Azaroual, P. D. Martino, C. Barthelemy, and P. Odou, Experimental study on infusion devices containing polyvinyl chloride: To what extent are they di(2-ethylhexyl)phthalate-free?, Int. J. Pharm., 412, 47-51 (2011).   DOI
23 P. Karmalm, T. Hjertberg, A. Jansson, and R. Dahl, Thermal stability of poly (vinyl chloride) with epoxidised soybean oil as primary plasticizer, Polym. Degrad. Stab., 94(12), 2275-2281 (2009).   DOI