Browse > Article
http://dx.doi.org/10.14478/ace.2016.1002

Advanced Treatment of Wastewater Using Symbiotic Co-culture of Microalgae and Bacteria  

Mujtaba, Ghulam (Department of Environmental Engineering and Energy, Myongji University)
Lee, Kisay (Department of Environmental Engineering and Energy, Myongji University)
Publication Information
Applied Chemistry for Engineering / v.27, no.1, 2016 , pp. 1-9 More about this Journal
Abstract
The co-culture system of microalgae and bacteria enables simultaneous removal of BOD and nutrients in a single reactor if the pair of microorganisms is symbiotic. In this case, nutrients are converted to biomass constituents of microalgae. This review highlights the importance and recent researches using symbiotic co-culture system of microalgae and bacteria in wastewater treatment, focusing on the removal of nitrogen and phosphorus. During wastewater treatment, the microalgae produces molecular oxygen through photosynthesis, which can be used as an electron acceptor by aerobic bacteria to degrade organic pollutants. The released $CO_2$ during the bacterial mineralization can then be consumed by microalgae as a carbon source in photosynthesis. Microalgae and bacteria in the co-culture system could cooperate or compete each other for resources. In the context of wastewater treatment, positive relationships are prerequisite to accomplish the sustainable removal of nutrients. Therefore, the selection of compatible species is very important if the co-culture has to be utilized in wastewater treatment.
Keywords
Microalgae; bacteria; symbiotic co-culture; nutrients removal; wastewater treatment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Z. Guo and Y. W. Tong, The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photoheterotrophic conditions, J. Appl. Phycol., 26, 1483-1492 (2013).
2 T. Cai, S. Y. Park, and Y. Li, Nutrient recovery from wastewater streams by microalgae: Status and prospects, Renew. Sustain. Energy Rev., 19, 360-369 (2013).   DOI
3 P. J. He, B. Mao, F. Lu, L. M. Shao, D. J. Lee, and J. S. Chang, The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters, Bioresour. Technol., 146, 562-568 (2013).   DOI
4 R. Marin, L. G. M. Espinosa, and T. Stephenson, Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater, Bioresour. Technol., 101, 58-64 (2010).   DOI
5 R. Munoz and B. Guieysse, Algal-bacterial processes for the treatment of hazardous contaminants: A review, Water Res., 40, 2799-2815 (2006).   DOI
6 F. Gonzalez, B. M. Salces, and M. C. G. Gonzalez, Nitrogen transformations under different conditions in open ponds by means of microalgae-bacteria consortium treating pig slurry, Bioresour. Technol., 102, 960-966 (2011).   DOI
7 Z. Liang, Y. Liu, F. Ge, Y. Xu, N. Tao, F. Peng, and M. Wong, Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis, Chemosphere, 92, 1383-1389 (2013).   DOI
8 L. E. Gonzalez and Y. Bashan, Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense, Appl. Environ. Microbiol., 66, 1527-1531 (2000).   DOI
9 L. E. de-Bashan, H. Antoun, and Y. Bashan, Cultivation factors and population size control the uptake of nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting bacterium Azospirillum brasilense, FEMS Microbiol. Ecol., 54, 197-203 (2005).   DOI
10 Vasseur, G. Bougaran, M. Garnier, J. Hamelin, C. Leboulanger, M. L. Chevanton, B. Mostajir, B. Sialve, J. P. Steyer, and E. Fouilland, Carbon conversion efficiency and population dynamics of a marine algae-bacteria consortium growing on simplified synthetic digestate: First step in a bioprocess coupling algal production and anaerobic digestion, Bioresour. Technol., 119, 79-87 (2012).   DOI
11 B. E. Rittmann, Opportunities for renewable bioenergy using microorganisms, Biotechnol. Bioeng., 100, 203-212 (2008).   DOI
12 V. V. Unnithan, A. Unc, and G. B. Smith, Mini-review: A priori considerations for bacteria-algae interactions in algal biofuel systems receiving municipal wastewaters, Algal. Res., 4, 35-40 (2014).   DOI
13 Y. Park, K.-W. Je, K. Lee, S.-E. Jung, and T.-J. Choi, Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga, Hydrobiologia, 598, 219-228 (2007).
14 S. R. Subashchandrabose, B. Ramakrishnan, M. Megharaj, K. Venkateswarlu, and R. Naidu, Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential, Biotechnol. Adv., 29, 896-907 (2011).   DOI
15 G. Y. Rhee, Competition between an alga and an aquatic bacterium for phosphate. Limnol. Oceanogr., 17, 505-514 (1972).   DOI
16 Q. Liang, W. Renjun, Z. Peng, C. Ruinan, Z. Wenli, T. Liuqing, and T. Xuexi, Interaction between Chlorella vulgaris and bacteria: interference and resource competition, Acta Oceanol. Sin., 33, 135-140 (2014).   DOI
17 J. Lee, D. H. Cho, R. Ramanan, B. H. Kim, H.-M. Oh, and H. S. Kim, Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris, Bioresour. Technol., 131, 195-201 (2013).   DOI
18 R. Delucca and M. D. McCracken, Observations on interactions between naturally-collected bacteria and several species of algae, Hydrobiologia, 55, 71-75 (1977).   DOI
19 J. Liu, A. J. Lewitus, J. W. Kempton, and S. B. Wilde, The association of algicidal bacteria and raphidophyte blooms in South Carolina brackish detention ponds. Harmful Algae, 7, 184-193 (2008).   DOI
20 L. A. Krometis, G. W. Characklis, P. N. Drummey, and M. D. Sobsey, Comparison of the presence and partitioning behavior of indicator organisms and Salmonella spp. In an urban watershed, J. Water Health, 08, 44-59 (2010).   DOI
21 G. Schumacher, T. Blume, and I. Sekoulov, Bacteria reduction and nutrient removal in small wastewater treatment plants by an algal biofilm, Water Sci. Technol., 47, 195-202 (2003).   DOI
22 F. Ribalet, L. Intertaglia, P. Lebaron, and R. Casotti, Differential effect of three polyunsaturated aldehydes on marine bacterial isolates, Aquat. Toxicol., 86, 249-255 (2008).   DOI
23 M. DellaGreca, A. Zarrelli, P. Fergola, M. Cerasuolo, A. Pollio, and G. Pinto, Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata: Experiments and modelling. J. Chem. Ecol., 36, 339-349 (2010).   DOI
24 K. Fukami, T. Nishijima, and Y. Ishida, Stimulative and inhibitory effects of bacteria on the growth of microalgae, Hydrobiologia, 358, 185-191 (1997).   DOI
25 J. J. Cole, Interactions between Bacteria and Algae in Aquatic Ecosystems, Ann. Rev. Ecol. Syst., 13, 291-314 (1982).   DOI
26 X. Ma, W. Zhou, Z. Fu, Y. Cheng, M. Min, Y. Liu, Y. Zhang, P. Chen, and R. Ruan, Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system, Bioresour. Technol., 167, 8-13 (2014).   DOI
27 P. Fergola, M. Cerasuolo, A. Pollio, G. Pinto, and M. DellaGreca, Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: Experiments and mathematical model, Ecol. Modell., 208, 205-214 (2007).   DOI
28 M. Danger, C. Oumarou, D. Benest, and G. Lacroix, Bacteria can control stoichiometry and nutrient limitation of phytoplankton, Funct. Ecol., 21, 202-210 (2007).   DOI
29 V. Lebsky, L. E. Gonzalez-Bashan, and Y. Bashan, Ultrastructure of interaction in alginate beads between the microalga Chlorella vulgaris with its natural associative bacterium Phyllobacterium myrsinacearum and with the plant growth-promoting bacterium Azospirillum brasilense, Can. J. Microbiol., 47, 1-8 (2001).   DOI
30 M. N. Byappanahalli, R. Sawdey, S. Ishii, D. A. Shively, J. A. Ferguson, R. L. Whitman, and M. J. Sadowsky, Seasonal stability of cladophora-associated Salmonella in lake Michigan watersheds, Water Res., 43, 806-814 (2009).   DOI
31 M. T. Croft, A. D. Lawrence, E. Raux-Deery, M. J. Warren, and A. G. Smith, Algae acquire vitamin B12 through a symbiotic relationship with bacteria, Nature, 438, 90-93 (2005).   DOI
32 C. Bouteleux, S. Saby, D. Tozza, J. Cavard, V. Lahoussine, P. Hartemann, and L. Mathieu, Escherichia coli behavior in the presence of organic matter released by algae exposed to water treatment chemicals, Appl. Environ. Microbiol., 71, 734-740 (2005).   DOI
33 Y. Zhang, H. Su, Y. Zhong, C. Zhang, Z. Shen, W. Sang, G. Yan, and X. Zhou, The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products, Water Res., 46, 5509-5516 (2012).   DOI
34 G. M. Wolfaardt, J. R. Lawrence, R. D. Robarts, and D. E. Caldwell, The role of interactions, sessile growth, and nutrient amendments on the degradative efficiency of a microbial consortium, Can. J. Microbiol., 40, 331-340 (1994).   DOI
35 H. Mazur, A. Konop, and R. Synak, Indole-3-acetic acid in the culture medium of two axenic green microalgae. J. Appl. Phycol., 13, 35-42 (2001).   DOI
36 J.-L. Mouget, A. Dakhama, M. C. Lavoie, and J. Noue, Algal growth enhancement by bacteria: Is consumption of photosynthetic oxygen involved? FEMS Microbiol. Ecol., 18, 35-43 (1995).   DOI
37 J. N. Rooney-Verga, M. W. Giewat, M. C. Savin, S. Sood, M. LeGresley, and J. L. Martin, Links between phytoplankton and bacterial community dynamics in a coastal marine environment, Microbiol. Ecol., 49, 163-175 (2005).   DOI
38 J.-P. Hernandez, L. E. de-Bashan, D. J. Rodriguez, Y. Rodriguez, and Y. Bashan, Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils, Eur. J. Soil Biol., 45, 88-93 (2009).   DOI
39 L. E. de-Bashan, M. Moreno, J. P. Hernandez, and Y. Bashan, Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense, Water Res., 36, 2941-2948 (2002).   DOI
40 C. E. Riquelme, Interaction between Microalgae and Bacteria in Coastal Seawater. PhD Dissertation, Kyoto University, Japan (1988).
41 R. M. M. Abed, Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons, Int. Biodeterior. Biodegradation, 64, 58-64 (2010).   DOI
42 J. Du, S. Cheng, C. Shao, Y. Lv, G. Pu, X. Ma, Y. Jia, and X. Tian, Growth stimulation of Microcystis aeruginosa by a bacterium from hyper-eutrophic water (Taihu Lake, China), Aquat. Ecol., 47, 303-313 (2013).   DOI
43 I. Suminto and K. Hirayama, Effects of bacterial coexistence on the growth of a marine diatom Chaetoceros gracilis. Fish. Sci., 62, 40-43 (1996).   DOI
44 L. E. de-Bashan and Y. Bashan, Immobilized microalgae for removing pollutants: Review of practical aspects, Bioresour. Technol., 101, 1611-1627 (2010).   DOI
45 F. G. Acien, C. V. Gonzalez, J. M. Fernandez, M. G. Gonzalez, J. Moreno, E. Sierra, M. G. Guerrero, and E. Molina, Removal of $CO_2$ from flue gases coupled to the photosynthetic generation of organic matter by cyanobacteria, Nat. Biotechnol., 25, S265 (2009).
46 R. Munoz, M. Jacinto, B. Guieysse, and B. Mattiasson, Combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors. Appl. Microbiol. Biotechnol., 67, 699-707 (2005).   DOI
47 G. Tchobanoglous, F. L. Burton, and H. D. Stensel, Wastewater Engineering: Treatment and Reuse. McGraw-Hill, New York, NY (2003).
48 I. de Godos, V. A. Vargas, S. Blanco, M. C. Gonzalez, R. Soto, P. A.-E Garcia, E. Becares, and R. Munoz, A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation, Bioresour. Technol., 101, 5150-5158 (2010).   DOI
49 R. O. Canizares-Villanueva, Heavy metals biosorption by using microbial biomass, Rev. Latinoam. Microbiol., 42, 131-143 (2000).
50 W. Mulbry, E. K. Westhead, C. Pizarro, and L. Sikora, Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer, Bioresour. Technol., 96, 451-458 (2005).   DOI
51 M. Medina and U. Neis, Symbiotic algal bacterial wastewater treatment: effect of food to microorganism ratio and hydraulic retention time on the process performance, Water Sci. Technol., 55, 165-171 (2007).
52 M. A. Aziz and W. J. Ng, Industrial wastewater treatment using an activated algae-reactor, Water Sci. Technol., 28, 71-76 (1993).   DOI
53 C. J. Ogbonnna, H. Yoshizawa1, and H. Tanaka, Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms, J. Appl. Phycol., 12, 277-284 (2000).   DOI
54 C. S. Lee, S.-A. Lee, S.-R. Ko, H.-M. Oh, and C.-Y. Ahn, Effects of photoperiod on nutrient removal, biomass production, and algal- bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater, Water Res., 68, 680-691 (2015).   DOI
55 X. Zhao, Y. Zhou, S. Huang, D. Qiu, L. Schideman, X. Chai, and Y. Zhao, Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production, Bioresour. Technol., 156, 322-328 (2014).   DOI
56 C. Gonzalez, J. Marciniak, S. Villaverde, C. Leon, P. A. Garcia, and R. Munoz, Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia, Water Sci. Technol., 58, 95-102 (2008).   DOI
57 H.-Y. Ren, B.-F. Liu, F. Kong, L. Zhao, and N. Ren, Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal, Water Res., 85, 404-412 (2015).   DOI
58 N. Mallick and L. C. Rai, Removal of inorganic ions from wastewaters by immobilized microalgae, World J. Microbiol. Biotechnol., 10, 439-443 (1994).   DOI
59 G. Mujtaba, M. Rizwan, and K. Lee, Simultaneous removal of inorganic nutrients and organic carbon by symbiotic co-culture of Chlorella vulgaris and Pseudomonas putida, Biotechnol. Bioprocess Eng., 20(6), 1114-1122 (2015).   DOI
60 H. Kawai, V. M. Grieco, and P. Jureidini, A study of the treatability of pollutants in high rate photosynthetic ponds and the utilization of the proteic potential of algae which proliferate in the ponds, Environ. Technol. Lett., 5, 505-515 (1984).   DOI
61 E. Zhang, B. Wang, Q. Wang, S. Zhang, and B. Zhao, Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment, Bioresour. Technol., 99, 3787-3793 (2008).   DOI
62 K. Liu, J. Li, H. Qiao, A. Lin, and G. Wang, Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of N and P from synthetic wastewater. Bioresour. Technol., 114, 26-32 (2012).   DOI
63 E. Posadas, P. A. G. Encina, A. Soltau, A. Dominguez, I. Diaz, and R. Munoz, Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors, Bioresour. Technol., 139, 50-58 (2013).   DOI
64 N. C. Boelee, H. Temmink, M. Janssen, C. J. N. Buisman, and R. H. Wijffels, Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms, Water Res., 45, 5925-5933 (2011).   DOI
65 F. Lananan, S. H. A. Hamid, W. N. S. Din, N. Ali, H. Khatoon, A. Jusoh, and A. Endut, Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp.), Int. Biodeter. Biodegradation, 95, 127-134 (2014).   DOI
66 F. Clarens, E. P. Resurreccion, M. A. White, and L. M. Colosi, Environmental life cycle comparison of algae to other bioenergy feedstocks, Environ. Sci. Technol., 44, 1813-1819 (2010).   DOI
67 D. Hernandez, B. Riano, M. Coca, and M. C. G. Gonzalez, Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass, Bioresour. Technol., 135, 598-603 (2013).   DOI
68 S. Aslan and I. K. Kapdan, Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae, Ecol. Eng., 28, 64-70 (2006).   DOI
69 G. Singh and P. B. Thomas, Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor, Bioresour. Technol., 117, 80-85 (2012).   DOI
70 Y. Z. Peng, X. L. Wang, and B. K. Li, Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the $A^2O$ process, Desalination, 189, 155-164 (2006).   DOI