Browse > Article
http://dx.doi.org/10.14478/ace.2015.1076

Isolation of an Arthrospira platensis Mutant Induced by Electron Beam Irradiation and its Characterization  

Choi, Soo-Jeong (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University)
Lee, Jae-Hwa (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University)
Publication Information
Applied Chemistry for Engineering / v.26, no.5, 2015 , pp. 569-574 More about this Journal
Abstract
Arthrospira platensis has high lipid and pigment (such as chlorophyll and carotenoid) contents and thus evaluated as an important resource in functional food production. The cell growth rate and pigment concentration of EM24 increased by approximately 1.2-fold than those of the wild-type strain (WT). Fluorescence intensity levels in EM24, which were quantified with a lipid triolein standard curve, also increased by approximately 1.5-fold than those in WT (62.9 mg/Lvs. 38.9 mg/L). The analysis of fatty acid profiles indicated that the gamma-linoleic acid level in EM24 increased by 1.5-fold than that in WT.
Keywords
Arthrospira platensis; electron beam; random mutagenesis; lipid; fatty acids;
Citations & Related Records
Times Cited By KSCI : 15  (Citation Analysis)
연도 인용수 순위
1 K. Y. Lim, K. Sharma, S. Garg, and P. M Schnk, The race for highly productive microalgae strains, Biofuels, 1(6), 835-837 (2010).   DOI   ScienceOn
2 S.-S. Hong and N.-H. Lee, Growth of Spirulina platensis in effiuents from wastewater treatment plant of pig farm, J. Microbiol. Biotechnol., 3(1), 19-23 (1993).
3 A. Klanchui, T. Vorapreeda, W. Vongsangnak, C. Khannapho, S. Cheevadhanarak, and A. Meechai, System biology and metabolic engineering of Arthrospira cell factories, Comput. Struct. Biotechnol. J., 4(3), 1-8 (2012).
4 S. Otles and R. Pire, Fatty Acid Composition of Chlorella and Spiculina Microalgae Species, J. AOAC Int., 84(6), 1708-17148 (2001).
5 S. cheevadhanarak, N. T. Marsac, J. C. Thomas, M. Tanticharoen, and P. Nomsawai, Light regulation of phycobilicome structure and gene expression in Spirulina platensis C1 (Arthrospira sp. PCC9483), Plant Cell Physiol., 40(12), 1194-1202 (1999).   DOI   ScienceOn
6 P. B. Bescos, A. M. Fresno, and J. E. P. Estrada, Antioxidant activity of different fractions of Spirulina platensis protean extract, Farmaco, 56, 497-500 (2001).   DOI   ScienceOn
7 Y.-J. Lee, S.-C. Wok, H.-J. Kim, J.-H. Lee, and M.-R. Kim, Quality Characteristics and Antioxidant Activities of Spirulina Added Korean Rice Cake (Garaeduk) during Storage, Korean J. Food Preserv., 16(1), 8-16 (2009).
8 J. A. mendiola et al., Screening of functional compounds in supercritical fluid extracts from Spirulina platensis, Food Chem., 102(4), 1357-1367 (2007).   DOI   ScienceOn
9 J.-Y. Kim, H. Joo, and J.-H. Lee, Carbon Dioxide Fixation and Light Source Effects of Spirulina platensis NIES 39 for LED Photobioreactor Design, Appl. Chem. Eng., 22(3), 301-307 (2011).
10 M. F. Ramadan, M. M. S. Asker, and Z. K. Ibrahim, Functional bioactive compounds and biological activitieds of Spirulina platensis lipids, Czech J. Food Sci., 26(3), 211-222 (2008).
11 S. R. Ronda and S. S. Lele, Culture conditions stimulating high gamma linolenic acid accumulation by Spirulina platensis, Brazil. J. Microbiol., 39(4), 693-697 (2008).   DOI
12 H.-J. Park, Y.-H. Kim, and J.-H. Lee, Characterization of Arthrospira platensis Mutants Generated by UV-B Irradiation, Appl. Chem. Eng., 23(5), 496-500 (2012).
13 Y.-H. Kim, S.-J. Choi, H.-J. Park, and J.-H. Lee, Electron beam-induced mutants of microalgae Arthrospira platensis increased antioxidant activity, Ind. Eng. Chem., 20(4), 1834-1840 (2014).   DOI   ScienceOn
14 J.-K. Park and C.-G. Lee, Immobiliztion of Astaxanthin Extracted from Photosynthetic Micro Algae Heamatococcus lacustris, J. Chitin Chitosan., 13(4), 210-214 (2008).
15 H. Y. Jeong and K.-R. Kim, Strain Improvement Based on Ion Beam-Induced Mutagenesis, Kor. J. Microbiol. Biotechnol., 38(3), 235-243 (2010).
16 Y. Hiroyasu, S. Akemi, H. Yoshihiro, D. Konosuke, T. Atsushi, and M. Toshikazu, Mutation induction with ion beam irradiation of lateral buds of chrysanthemum and analysis of chimeric structure of induced mutants. Euphytica, 165(1), 97-103 (2009).   DOI
17 S. Y. Park, H. A. Noh, H. Cho, A. Dumont, S. Ptasinska, A. D. Bass, and L. Sanche, DNA damage by X-ray and low energy electron beam irradiation. J. Kor. Radiat. Prot., 33(2), 53-59 (2008).
18 S. Ptasinska and L. Sanche, On the mechanism of anion desorption from DNA induced by low energy electrons, J. Chem. Phys., 125(14), 144713-144722 (2006).   DOI   ScienceOn
19 S. H. Yu, I. H. Cho, S. W. Chang, S. J. Lee, S. Y. Chun, and H. L. Kim, Decomposition Characteristics of Fungicides(Benomyl) using a Design of Experiment(DOE) in an E-beam Process and Acute Toxicity Assessment, J. Kor. Soc. Environ. Eng., 30(9), 955-960 (2008).
20 J. H. Ryu, H.-S. So, S.-H. Bae, H. S. Kang, B. C. Lee, S.-Y. Kang, H.-Y. Lee, and C.-H. Bae, Genetic Diversity of in vitro Cultured Cymbidium spp. Irradiated with Electron Beam, Kor. J. Breed. Sci., 45(1), 8-18 (2013).   DOI
21 Y. M. Kim, J.-Y. Kim, S.-M. Lee, J.-M. Ha, T. H. Kwon, and J.-H. Lee, Carbon Dioxide Fixation using Spirulina platensis NIES 39 in Polyethylene Bag, Appl. Chem. Eng., 21(3), 272-277 (2010).
22 S.-J. Choi, Y.-H. Kim, A. Kim, and J.-H. Lee, Arthrospira platensis mutants containing high lipid content by electron beam irradiation and analysis of its fatty acid composition, Appl. Chem. Eng., 24(6), 628-632 (2013).   DOI   ScienceOn
23 S.-R. Moon, B.-K. Son, J.-O. Yang, J.-S. Woo, C. M. Yoom, and G.-H. Kim, Effect of Electron-beam Irradiation on Development and Reproduction of Bemisia tabaci, Myzus persicae, Plutella xylostella and Tetranychus urticae, Kor. J. Appl. Entomol., 49(2), 129-137 (2010).   DOI   ScienceOn
24 H.-J. Park, Y.-H. Kim, and J.-H. Lee, Characterization of Arthrospira platensis Mutants Generated by UV-B Irradiation, Appl. Chem. Eng., 23(5), 496 (2012).
25 W. Chen, M. Sommerfeld, and Q. Hu, Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae, Bioresour. Technol., 102(1), 135-141 (2011).   DOI   ScienceOn
26 Y.-H. Kim and J.-H. Lee, Isolation of Arthrospira platensis mutants Producing High Lipid and Phycobiliproteins, Kor. Soc. Biotechnol. Bioeng. J., 27, 172-176 (2012).
27 E. Bertozzini, L. Galluzzi, A. Penna, and M. magnani, Application of the standard addition method for the absolute quantification of newtural lipids in microalge using Nile red, J. Microbiol. Methods, 87(1), 17-23 (2011).   DOI   ScienceOn
28 K. M. Minkova, A. A. Tchernov, M. I. Tchorbadjieva, S. T. Fournadjieva, R. E. Antova, and M. C. H. Busheva, Purification of C-phycocyanin from Spirulin(Arthrospira) fusiformis, J. Biotechnol., 102(1), 55-59 (2003).   DOI   ScienceOn
29 H.-L. Tran, S.-J. Hong, and C.-G. Lee, Evaluation of extraction methods for recovery of fatty acids from Botrycoccus braunii LB 572 and Synechocystis sp. PCC 6803, Biotechnol. Bioprocess Eng., 14(2), 187-192 (2009).   DOI   ScienceOn
30 J.-H. Kim, H.-J. Park, Y.-H. Kim, H. Joo, S.-H. Lee, and J.-H. Lee, UV-induced mutagenesis of Nannochloropsis oculata for the increase of lipid accumulation and its characterization, Appl. Chem. Eng., 24(2), 155-160 (2013).
31 S. Boussiba, B. Wang, P. P. Yuan, A. Zarka, and F. Chen, Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnol. Lett.. 21, 601-604, (1999).   DOI   ScienceOn
32 S. H. Oh, J. G. Han, N. Y. Kim, J. S. Cho, T. B. Yim, S. Y. Lee, and H. Y. Lee, Cell Growth and Lipid Production from Fed-batch Cultivation of Chlorella minutissima according to Culture Conditions, Kor. Soc. Biotechnol. Bioeng. J., 24(4), 377-382 (2009).
33 D.-K. Kim, J.-A. Shin, and K.-T. Lee, Monitoring of compositions of gamma-linoleic and omega-3 fatty acids in some functional foods consumed in market, CNU J. Agric. Sci., 38(2), 277-284 (2011).