Browse > Article
http://dx.doi.org/10.14478/ace.2015.1058

Antioxidant and Tyrosinase Inhibitory Activities of Dicaffeoylquinic Acid Derivatives Isolated from Gnaphalium Affine D. DON  

Im, Na Ri (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
Kim, Hae Soo (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
Ha, Ji Hoon (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
Noh, Geun Young (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
Publication Information
Applied Chemistry for Engineering / v.26, no.4, 2015 , pp. 470-476 More about this Journal
Abstract
In this study, three dicaffeoylquinic acids (DCQAs) isolated from Gnaphalium affine D. DON. extracts were structurally identified and evaluated for their antioxidant activities, cellular protective effects, and tyrosinase inhibitory activities. The ethyl acetate fraction of G. affine was chromatographed, which yielded 3 DCQA derivatives of 1-3 : 3,5-dicaffoylquinic acid (3,5-DCQA, 1), 4,5-dicaffeoylquinic acid (4,5-DCQA, 2), 1,5-dicaffoylquinic acid (1,5-DCQA, 3). The structure of each compounds was determined using $^1H$ NMR and MS analyses. Compounds of 1-3 showed strong free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities ($FSC_{50}=3.70$, 5.80, and $5.50{\mu}M$, respectively) compared to those of a commonly used lipophilic antioxidant, (+)-${\alpha}$-tocopherol ($21.90{\mu}M$). Cellular protective effects of 1-3 compounds on the $^1O_2$ sensitized photohemolysis of human erythrocytes were similar to (+)-${\alpha}$-tocopherol. 1-3 compounds also exhibited higher tyrosinase inhibitory effects ($IC_{50}=0.15$, 0.16, and 0.13 mM) compared to arbutin (0.33 mM), known as a skin-whitening agent. These results indicate that three DCQA derivatives may be applied as an antioxidant and a skin whitening agent in food or cosmetic industries.
Keywords
gnaphalium affine; dicaffeoylquinic acid; DPPH radical scavenging activity; cellular protective effect; tyrosinase;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 S. B. Han, H. A. Gu, S. J. Kim, H. J. Kim, S. S. Kwon, and H. S. Kim, Comparative study on antioxidative activity of Glycyrrhiza uralensis and Glycyrrhiza glabra extracts by country of origin, J. Soc. Cosmet. Scientists Korea, 39, 1-8 (2013).   DOI
2 S. Pillai, C. Oresajo, and J. Hayward, Ultraviolet radication and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation-a review, Int. J. Cosmet. Science, 27, 17-34 (2005).   DOI   ScienceOn
3 G. E. Rhie, M. H. Shin, J. Y. Seo, W. W. Choi, K. H. Cho, and K. H. Kim, Aging- and photoaging-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo, J. Invest. Dermatol., 117, 1212-1217 (2011).
4 V. Afonso, R. Champy, D. Mitrovic, P. I. Collin, and A. Lomri, Reactive oxygen species and superoxide dismutases Role in joint diseases, Joint Bone Spine., 74, 324-329 (2007).   DOI   ScienceOn
5 M. J. Davies, Reactive oxygen species, metalloproteinases, and plaque stability, Amer. Heart J., 23, 2382-2383 (1998).
6 D. Bagchi D, M. Bagchi, E. A. Hassoun, and S. J. Stohs, In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides, Toxicology, 104, 129-140 (1995).   DOI   ScienceOn
7 S. B. Berman and T. Hastings, Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species, J. Neurochem., 69, 1185-1195 (1997).
8 J. Yamakoshi, F. Otsuka, A. Sano, S. Tokutake, M. Saito, and M. Kikuchi, Lightening effect on ultraviolet-induced pigmentation of guinea pig skin by oral administration of a proanthocyanidin-rich extract from grape seeds, Pig. Cell Res., 16, 629-638 (2003).   DOI   ScienceOn
9 S. M. Park, S. Y Kim, G. N. Lim, N. R. Jo, and M. H. Lee, In vitro skin permeation and cellular protective effects of flavonoids isolated from Suaeda asparagoides extracts, J. Ind. Eng. Chem., 18, 680-683 (2012).   DOI   ScienceOn
10 N. R. Jo, H. A. Gu, S. A. Park, S. B. Han, and S. N. Park, Cellular protective effect and liposome formulation for enhanced transdermal delivery of isoquercitrin, J. Soc. Cosmet. Scientists Korea, 38, 103-118 (2012).   DOI
11 M. Iwata M, T. Corn, S. Iwata, M. A. Everett, and B. B. Fuller, The relationship between tyrosinase activity and skin color in human foreskins, J. Invest. Dermatol., 95, 9-15 (1990).   DOI   ScienceOn
12 K. Kameyama, T. Takemura, Y. Hamada, C. Sakai, S. Kondoh, and S. Nishi-yama, Pigment production in murine melanoma cells is regulated by tyrosinase, tyrosinase-related protein 1 (TRP), dopachrome tautomerase (TRP 2) and a melanogenic inhibitor, J. Invest. Dermatol., 100, 126-132 (1993).   DOI   ScienceOn
13 J. C. Cho, H. S. Rho, Y. H. Joo, S. M. Ahn, D. H. Won, S. S. Shin, Y. H. Park, K. D. Suh, and S. N. Park, The depigmenting activities of hydroxyl carboxamide derivatives containing hydrophobic moiety, Bull. Korean Chem. Soc., 33, 1333-1336 (2012).   DOI   ScienceOn
14 Y. J. Kima and H. Uyama, Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future, CMLS, Cell. Mol. Life Sci., 62, 1707-11723 (2005).   DOI
15 Z. Xi, W. Chen, Z. Wu, Y. Wang, P. Zeng, G. Zhao, X. Li, and L. Sun, Anti-complementary activity of flavonoids from Gnaphalium affine D. Don, Food Chem., 130, 165-170 (2012).   DOI   ScienceOn
16 H. S. Kim, N. R. Im, J. H. Park, M. O. Kim, and S. N. Park, Antioxidative Effect and Active Component Analysis of Gnaphalium affine D. DON. Extraxts, J. Soc. Cosmet. Scientists Korea, 40, 11-20 (2014).   DOI   ScienceOn
17 J. Li, D. Huang, W. Chen, Z. Xi, C. Chen, G. Huang, and L. Sun, Two New Phenolic Glycosides from Gnaphalium affine D. Don and Their Anti-Complementary Activity, Molecules, 18, 7751-7760 (2013).   DOI   ScienceOn
18 M. Morimoto, S. Kumeda, and K. Komai, Insect antifeedant flavonoids from Gnaphalium affine D. Don., J. Agric. Food Chem., 48, 1888-1891 (2000).   DOI   ScienceOn
19 M. Aritomi and T. Kawasaki, Dehydro-para-asebotin, a new chalconeglucoside in the flowers of Gnaphalium affine D. Don., Chem. Pharm. Bull., 22, 1800-1805 (1974).   DOI   ScienceOn
20 M. Aritomi, M. Shimojoe, and T. Mazaki Aritomi, Chemical Constituents in Flowers of Gnaphalium affine D. Don., Yakugaku Zasshi., 84, 895-896 (1964).   DOI
21 A. N. Shikova, M. Kundracikovac, T. L. Palama, O. N. Pozharitskaya, V. M. Kosman, V. G. Makarov, B. Galambosi, H. J. Kim, Y. P Jang, Y. H. Choi, and R. Verpoorte, phenolic constituents of Gnaphalium uliginosum L., Phytochemistry, 3, 45-47 (2010).   DOI   ScienceOn
22 Y. Aoshima, Y. Hasegawa, S. Hasegawa, A. Nagasaka, T. Kimura, S. Hashimoto, Y. Torii, and N. Tsukagoshi, Isolation of GnafC, a polysaccharide constituent of Gnaphalium affine, and synergistic effects of GnafC and ascorbate on the phenotypic expression of osteoblastic MC3T3-E1 cells, Bios. Biotechnol. Biochem., 67, 2068-2074 (2003).   DOI   ScienceOn
23 W. C. Zeng, R. X. Zhu, L. R. Jia, H. Gao, and Y. Zheng, Chemical composition, antimicrobial and antioxidant activities of essential oil from Gnaphlium affine, Food Chem. Toxicol., 49, 1322-1328 (2011).   DOI   ScienceOn
24 T. L. Meragelman, G. L. Silva, E. Mongelli, and R. R. Gil, ent-Pimarane type diterpenes from Gnaphalium gaudichaudianum, Phytochemistry., 62, 569-572 (2003).   DOI   ScienceOn
25 A. Urza, R. Torres, C. Bueno, and L. Mend, Flavonoids and diterpenoids in the trichome resinous exudate from Pseudognaphalium cheiranthifolium, P. heterotrichium and P. vira vira, Biochem. Syst. Ecol., 23, 459 (1995).   DOI   ScienceOn
26 A. Vanni, D. Gastaldi, and G. Giunta, Kinetic investigations on the double enzymic activity of the tyrosinase mushroom, Annali di Chimica., 80, 1-2 (1990).
27 Z. Xi, W. Chen, Z. Wu, Y. Wang, P. Zeng, G. Zhao, X. Li, and L. Sun, Chemical constituents of petroleum ether fractions of Gnaphalium affine D. Don. Acad. J. Sec. Mil. Med. Univ., 32, 311-313 (2011).
28 T. Hatano, H. Kagawa, T. Yasuhara, and T. Okuda, Two New Flavonoids and Other Constituents in Licorice Root: Their Relative Astringency and Radical Scavenging Effects. Chem. Pharm. Bull., 36, 2090-2097 (1988).   DOI   ScienceOn
29 S. N. Park, D. H. Won, J. P. Hwang, and S. B. Han, Cellular protective effects of dehydroeffusol isolated from Juncus effusus L. and the mechanisms underlying these effects, J. Ind. Eng. Chem., 20, 3046-3052 (2014).   DOI   ScienceOn
30 A. Tolonen, T. Joutsamo, S. Mattlla, T. Kamarainen, and Jalonen J, Identification of isomeric dicaffeoylquinic acids from Eleutherococcus senticosus using HPLC-ESI/TOF/MS and $^1H$ NMR methods, Phytochem. Anal., 13, 316-328 (2002).   DOI   ScienceOn
31 M. N. Clifford, S. Knight, and N. Kuhnert, Discriminating between the six isomers of dicaffeoylquinic acid by $LC-MS^n, J. Agric. Food Chem., 53, 3821-3832 (2005).   DOI   ScienceOn
32 R. Gu, G. Dou, J. Wang, J. Dong, and Z. Meng, Simultaneous determination of 1,5-dicaffeoylquinic acid and its active metabolites in human plasma by liquid chromatography-tandem mass spectrometry for pharmacokinetic studies, J. Chromatogr. B., 852, 85-91 (2007).   DOI   ScienceOn
33 I. Parejo, F. Viladomat, J. Bastida, G. Schmeda-Hirschmann, J. Burillo, and Codina C, Bioguided isolation and identification of the nonvolatile antioxidant compounds from fennel (Foeniculum vulgare Mill.) waste, J. Agric. Food Chem., 52, 1890-1897 (2004).   DOI   ScienceOn
34 N. R. Jo, S. A. Park, S. H. Jeon, J. H. Ha, and S. N. Park, Cellular Protective Effects and Antioxidative Activity of Resveratrol, Appl. Chem. Eng., 24, 483-488 (2013).