Browse > Article
http://dx.doi.org/10.14478/ace.2015.1050

Adsorption Characteristics of Chromium Ion at Low Concentration Using Oxyfluorinated Activated Carbon Fibers  

Kim, Min-Ji (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Jung, Min-Jung (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University)
Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.26, no.4, 2015 , pp. 432-438 More about this Journal
Abstract
In this work, activated carbon fibers (ACFs) were oxyfluorinated and their adsorption ability for the low concentration of hexavalent chromium in an aqueous solution was investigated. The pore structure and surface properties of ACFs were examined by BET and X-ray Photoelectron Spectroscopy (XPS), respectively. Due to the oxyfluorination treatment, the content of (C-O) bond on ACFs surface which influences the adsorption capacity for heavy metal ions increased largely, resulting that $Cr^{6+}$ adsorption equilibrium reached quickly within 10 min. In addition, the maximum removal efficiency at the initial $Cr^{6+}$ concentration of 20 ppm was observed, which is a 100% improvement compared to that of non-treated ACFs. These results suggest that the oxyfluorination of ACFs can be applied as a good surface treatment for the effective adsorption of the low concentration of $Cr^{6+}$.
Keywords
Cr(Ⅵ); activated carbon fibers (ACFs); oxyfluorination; adsorption;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Z. Hu, L. Lei, Y. Li, and Y. Ni, Chromium adsorption on high-performance activated carbons from aqueous solution, Sep. Purif. Technol., 31, 13-18 (2003).   DOI   ScienceOn
2 K. Kaya, E. Pehlivan, C. Schmidt, and M. Bahadir, Use of modified wheat bran for the removal of chromium(VI) from aqueous solutions, Food Chem., 158, 112-117 (2014).   DOI   ScienceOn
3 V. Sarin and K. K. Pant, Removal of chromium from industrial waste by using eucalyptus bark, Bioresource Technol., 97, 15-20 (2006).   DOI   ScienceOn
4 Y. Qu, X. Zhang, J. Xu, W. Zhang, and Y. Guo, Removal of hexavalent chromium from wastewater using magnetotactic bacteria, Sep. Purif. Technol., 136, 10-17 (2014).   DOI   ScienceOn
5 C. Jeon and J. H. Kim, Heavy metal removal using sawdust, J. of KORRA, 15, 81-88 (2007).
6 H. Y. Lee, K. C. Hong, J. E. Lim, J. H. Joo, J. E. Yang, and Y. S. Ok, Adsorption of Heavy Metal Ions from Aqueous Solution by Chestnut Shell, Kor. J. Environ. Agric., 28, 69-74 (2009).   DOI   ScienceOn
7 N. Talreja, D. Kumar, and N. Verma, Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads, J. Water Process Eng., 3, 34-45 (2014).   DOI   ScienceOn
8 T. Motsi, N. A. Rowson, and M. J. H. Simmons, Adsorption of heavy metals from acid mine drainage by natural zeolite, Int. J. Miner. Process., 92, 42-48 (2009).   DOI   ScienceOn
9 K. Kadirvelu, K. Thamaraiselvi, and C. Namasivayam, Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste, Bioresource Technol., 76, 63-65 (2001).   DOI   ScienceOn
10 M. A. A. Zaini, Y. Amano, and M. Machida, Adsorption of heavy metals onto activated carbons derived from polyacrylonitrile fiber, J. Hazard. Mater., 180, 552-560 (2010).   DOI   ScienceOn
11 I. J. Yeon, H. S. Shin, T. S. Shin, and K. Y. Kim, Synthesis of activated carbon fiber as adsorbent using cellulose acetate and phenolic resin as carbon source, J. Korea Soc. Waste Manag., 30, 418-427 (2013).   DOI
12 K. C. Kang, S. H. Kwon, S. S. Kim, J. W. Choi, and K. S. Chun, Adsorption of heavy metal ions onto a surface treated with granular activated carbon and activated carbon fibers, J. Anal. Sci. Technol., 19, 285-289 (2006).
13 J. S. Im, S. C. Kang, S. H. Lee, and Y. S. Lee, Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification, Carbon, 48, 2573-2581 (2010).   DOI   ScienceOn
14 L. E. Cruz-Barba, S. Manolache, and F. Denes, Novel plasma approach for the synthesis of highly fluorinated thin surface layers, Langmuir, 18, 9393-9400 (2002).   DOI   ScienceOn
15 J. S. Im, S. J. Kim, P. H. Kang, and Y. S. Lee, The improved electrical conductivity of carbon nanofibers by fluorinated MWCNTs, J. Ind. Eng. Chem., 15, 699-702 (2009).   DOI   ScienceOn
16 M. J. Jung, J. W. Lim, I. J. Park, and Y. S. Lee, Fluorination of Polymethylmethacrylate (PMMA) film and its surface characterization, Appl. Chem. Eng., 21, 317-322 (2010).
17 S. J. Gregg and K. S. W. Sing, Adsorption surface area and porosity, Second ed., 195, Academy Press, London (1982).
18 A. Tressaud, E. Durand, and C. Labrugere, Surface modification of several carbon-based materials: comparison between CF4 rf plasma and direct F2-gas fluorination routes, J. Fluorine Chem., 125, 1639-1648 (2004).   DOI   ScienceOn
19 R. B. Mathur, V. Gupta, O. P. Bahl, A. Tressaud, and S. Flandrois, Improvement in the mechanical properties of polyacrylonitrile (PAN)-based carbon fibers after fluorination, Synth. Met., 114, 197-200 (2000).   DOI   ScienceOn
20 Y. S. Lee and B. K. Lee, Surface properties of oxyfluorinated PAN-based carbon fibers, Carbon, 40, 2461-2468 (2002).   DOI   ScienceOn
21 S. J. Park, M. K. Seo, and Y. S. Lee, Surface characteristics of fluorine-modified PAN-based carbon fibers, Carbon, 41, 723-730 (2003).   DOI   ScienceOn
22 C. L. Mangun, K. R. Benak, J. Economy, and K. L. Foster, Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia, Carbon, 39, 1809-1820 (2001).   DOI   ScienceOn
23 T. Nakajima, V. Gupta, Y. Ohzawa, M. Koh, R. N. Singh, A. Tressaud, and E. Durand, Electrochemical behavior of plasma-fluorinated graphite for lithium ion batteries, J. Power Sources, 104, 108-114 (2002).   DOI   ScienceOn
24 M. J. Jung, E. Jeong, S. Kim, S. I. Lee, J. S. Yoo, and Y. S. Lee, Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors, J. Fluorine Chem., 132, 1127-1133 (2011).   DOI   ScienceOn
25 M. J. Jung, J. W. Kim, J. S. Im, S. J. Park, and Y. S. Lee, Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination, J. Ind. Eng. Chem., 15, 410-414 (2009).   DOI   ScienceOn
26 J. Jang and H. Yang, The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites, J. Mater. Sci., 35, 2297-2303 (2000).   DOI   ScienceOn
27 D. Y. Kim, S. J. In, and Y. S. Lee, Effect of Fluorination and Ultrasonic Washing Treatment on Surface Characteristic of Poly(ethylene terephthalate), Polymer(Korea), 37, 316-322 (2013).
28 M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Effects of the Fluorination of Activated Carbons on the Chromium Ion Adsorption, Appl. Chem. Eng., 26, 92-98 (2015).   DOI   ScienceOn
29 C. Jeon and S. S. Choi, A study on heavy metal removal using alginic acid. J. of KORRA, 15, 107-114 (2007).
30 A. K. Meena, G. K. Mishra, P. K. Rai, C. Rajagopal, and P. N. Nagar, Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent, J. Hazard. Mater., B122, 161-170 (2005).
31 L. Zhang and Y. Zhang, Adsorption characteristics of hexavalent chromium on HCB/TiO2, Appl. Surf. Sci., 316, 649-656 (2014).   DOI   ScienceOn
32 H. S. Ju, S. I. Lee, Y. S. Lee, and H. G. Ahn, Surface modification of activated carbon by acid treatment and adsorption property of heavy metals, Appl. Chem., 4, 173-176 (2000).
33 A. Bismarck, R. Tahhan, J. Springer, A. Schulz, T. M. Klapotke, H. Zell, and W. Michaeli, Influence of fluorination on the properties of carbon fibres, J. Fluorine Chem., 84, 127-134 (1997).   DOI   ScienceOn