Browse > Article
http://dx.doi.org/10.14478/ace.2015.1041

Gas Permeation Properties of PTMSP-ZIF Composite Membrane  

Lee, Seul Ki (Department of Chemistry, Sang Myung University)
Hong, Se Ryeong (College of General Studies, Sang Myung University)
Publication Information
Applied Chemistry for Engineering / v.26, no.4, 2015 , pp. 413-420 More about this Journal
Abstract
PTMSP-ZIF composite membranes were prepared by the addition of zeolitic imidazolate framework (ZIF-8) into poly (1-trimethylsilyl-1-propyne) (PTMSP) having high gas permeability to improve trade-off relationship of the polymer membrane. PTMSP-ZIF composite membranes were prepared with different amounts of ZIF-8; 0, 5, 10, 20, 30 and 40 wt%. Gas permeation properties for $H_2$, $N_2$, $CO_2$, and $CH_4$ were investigated by increasing the amount of ZIF-8 in the PTMSP. The gas permeability of PTMSP-ZIF composite membranes within 5~30 wt% of ZIF-8 contents increased as ZIF-8 contents went up and decreased thereafter. The gas permeability for $CO_2$ showed the maximum value of 76080 barrer at 30 wt% of ZIF-8 content and PTMSP-ZIF composite membrane containing 20 wt% of ZIF-8 content had the highest selectivity ($CO_2/N_2$) with the value of 8.2. The selectivity ($H_2/N_2$) and selectivity ($CO_2/CH_4$) were almost the same as PTMSP in the range 10~40 wt% of the ZIF-8. Overall, PTMSP-ZIF composite membranes resulted in maintained selectivity and increased permeability compared to those of PTMSP membranes.
Keywords
PTMSP; ZIF-8; permeability; selectivity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. Q. Vu, W. J. Koros, and S. J. Miller, Mixed matrix membranes using carbon molecular sieves. I. Preparation and experimental results, J. Membr. Sci., 211, 311-334 (2003).   DOI   ScienceOn
2 T. Li, Y. Pan, K. V. Peinemann, and Z. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers, J. Membr. Sci., 425-426, 235-242 (2013).   DOI   ScienceOn
3 R. D. Noble, Perspectives on mixed matrix membranes, J. Membr. Sci., 378, 393-397 (2011).   DOI   ScienceOn
4 C. Zhang, Y. Dai, J. R. Johnson, O. Karvan, and W. J. Koros, High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations, J. Membr. Sci., 389, 34-42 (2012).   DOI   ScienceOn
5 T. H. Bae, J. S. Lee, W. L. Qiu, W. J. Koros, C. W. Jones, and S. Nair, A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals, Angew. Chem. Int. Ed., 49, 9863-9866 (2010).   DOI   ScienceOn
6 A. Car, C. Stropnik, and K. V. Peinemann, Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation, Desalination, 200, 424-426 (2006).   DOI   ScienceOn
7 K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, P. Natl. Acad. Sci. USA, 103, 10186-10191 (2006).   DOI   ScienceOn
8 A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O'Keeffe, and O. M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Accounts Chem. Res., 43, 58-67 (2010).   DOI   ScienceOn
9 G. Lu and J. T. Hupp, Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Perot device as a selective sensor for chemical vapors and gases, J. Am. Chem. Soc., 132, 7832-7833 (2010).   DOI   ScienceOn
10 Y. Dai, J. R. Johnson, O. Karvan, D. S. Sholl, and W. J. Koros, $ Ultem^{(R)}$/ZIF-8 mixed matrix hollow fiber membranes for $CO_2/N_2$ separations, J. Membr. Sci., 401, 76-82 (2012).
11 X, L. Liu, Y. S. Li, G. Q. Zhu, Y. J. Ban, L. Y. Xu, and W. S. Yang, An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols, Angew. Chem. Int. Ed., 50, 10636-10639 (2011).   DOI   ScienceOn
12 M. Askari and T. S. Chung, Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed membranes, J. Membr. Sci., 444, 173-183 (2013).   DOI   ScienceOn
13 V. Nafisi and M. B. Hagg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for $CO_2$ capture, J. Membr. Sci., 459, 244-255 (2014).   DOI
14 N. Hara, M. Yoshimune, H. Negishi, K. Haraya, S. Hara, and T. Yamaguchi, Diffusive separation of propylene/propane with ZIF-8 membranes, J. Membr. Sci., 450, 215-223 (2014).   DOI   ScienceOn
15 Y. Pan, T. Li, G. Lestari, and Z. Lai, Effective separation of propylene/ propane binary mixtures by ZIF-8 membranes, J. Membr. Sci., 390-391, 93-98 (2012).   DOI   ScienceOn
16 I. Pinnau and L. G. Toy, Transport of organic vapors through poly(1-trimethylsilyl-1-propyne), J. Membr. Sci., 116, 199-209 (1996).   DOI   ScienceOn
17 A. F. Bushell, M. P. Attfield, C. R. mason, P. M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. C. Jansen, M. Lanc, K. Friess, V. Shantarovich, V. Gustov, and V. Isaeva, Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8, J. Membr. Sci., 427, 48-62 (2013).   DOI   ScienceOn
18 K. Nagai, S. Kanehashi, S. Tabei, and T. Nakagawa, Nitrogen permeability and carbon dioxide solubility in poly(1-trimethylsilyl-1-propyne)-based binary substituted polyacetylene blends, J. Membr. Sci., 251, 101-110 (2005).   DOI   ScienceOn
19 T. C. Merkel, V. I. Bondar, K. Nagai, and B. D. Freeman, Sorption and transport of hydrocarbon and perfluorocarbon gases in poly(1-trimethylsilyl-1-propyne), J. Polym. Sci. Pol. Phy., 38, 273-296 (2000).   DOI
20 I. L. Borisov, A. O. Malakhov, V. S. Khotimsky, E. G. Litvinova, E. S. Finkelshtein, N. V. Ushakov, and V. V. Volkov, Novel PTMSP-based membranes containing elastomeric fillers: Enhanced 1-butanol/water pervaporation selectivity and permeability, J. Membr. Sci., 466, 322-330 (2014).   DOI   ScienceOn
21 S. D. Kelmana, R. D. Raharjoa, C. W. Bielawskib, and B. D. Freemana, The influence of crosslinking and fumed silica nanoparticles on mixed gas transport properties of poly[1-(trimethylsilyl)-1-propyne], Polymer, 49, 3029-3041 (2008).   DOI   ScienceOn
22 G. Consolatia, M. Pegorarob, F. Quassoa, and F. Severinib, Chlorinated PTMSP membranes: permeability, free volume and physical properties, Polymer, 42(3), 1265-1269 (2001).   DOI   ScienceOn
23 K. D. Sitter, P. Winberg, J. D'Haen, C. Dotremont, R. Leysen, J. A. Martens, S. Mullens, F. H. J. Maurer, and I. F. J. Vankelecom, Silica filled poly(1-trimethylsily-1-propyne) nanocomposite membranes: Relation between the transport of gases and structural characteristics, J. Membr. Sci., 278, 83-91 (2006).   DOI   ScienceOn
24 M. Ghisellinia, M. Quinzia, M. G. Baschettia, F. Doghieria, G. Costab, and G. C. Sarti, Sorption and diffusion of vapors in PTMSP and PTMSP/PTMSE copolymers, Desalination, 149, 441-445 (2002).   DOI   ScienceOn
25 S. Matteuccia, V. A. Kusumaa, D. Sandersa, S. Swinneab, and B. D. Freeman, Gas transport in $TiO_2$ nanoparticle-filled poly(1-trimethylsilyl-1-propyne), J. Membr. Sci., 307, 196-217 (2008).   DOI   ScienceOn
26 T. C. Merkel, Z. He, and I. Pinnau, Effect of nanoparticles on gas sorption and transport in poly(1-trimethylsilyl-1-propyne), Macromolecules, 36, 6844-6855 (2003).   DOI   ScienceOn
27 S. H. Lee, M. Z. Kim, C. H. Cho, and M. H. Han, $CO_2$ permeation behavior of Pebax-2533 plate membranes prepared from 1-propanol/ n-butanol mixed solvents, Membr. J., 23(5), 367-374 (2013).
28 Y. Hu, H. Kazemian, S. Rohani, Y. Huang, and Y. Song, In situ high pressure study of ZIF-8 by FTIR spectroscopy, Chem. Commun., 47, 12694-12696 (2011).   DOI   ScienceOn
29 R. H. B. Bouma, A. Checchetti, G. Chidichimo, and E. Drioli, Permeation through a heterogeneous membrane: the effect of the dispersed phase, J. Membr. Sci., 128, 141-149 (1997).   DOI   ScienceOn
30 R. M. Barrer, J. A. Barrie, and M. G. Rogers, Heterogeneous membranes: diffusion in filled rubber, J. Polym. Sci. Pol. Chem., 1, 2565-2586 (1963).
31 Q. Song, S. K. Nataraj, M. V. Roussenova, J. C. Tan, D. J. Hughes, W. Li, P. Bourgoin, M. A. Alam, A. K. Cheetham, S. A. Al-Muhtasebd, and E. Sivaniah, Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation, Energy Environ. Sci., 5, 8359-8369 (2012).   DOI   ScienceOn
32 H. Sun, L. Lu, X. Chen, and Z. Jiang, Surface-modified zeolite-filled chitosan membranes for pervaporation dehydration ethanol, Appl. Surf. Sci., 254, 5367-5374 (2008).   DOI   ScienceOn
33 T. Li, Y. Pan, K. V. Peinemann, and Z. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers, J. Membr. Sci., 425-426, 235-242 (2013).   DOI   ScienceOn
34 S. W. Hwang, Y. C. Chung, B. C. Chun, and S. J. Lee, Gas permeability of polyethylene films containing zeolite powder, Polymer(Korea), 28(5), 374-381 (2004).
35 S. R. Venna and M. A. Carreon, Highly Permeable Zeolite Imidazolate Framework-8 Membranes for $CO_2/CH_4$ Separation, J. Am. Chem. Soc., 132, 76-78 (2010).   DOI   ScienceOn
36 L. Hao, P. Li, T. Yang, and T. S. Chung, Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion $CO_2$ capture, J. Membr. Sci., 436, 221-231 (2013).   DOI   ScienceOn
37 M. Naghsh, M. Sadeghi, A. Moheb, M. P. Chenar, and M. Mohagheghian, Separation of ethylene/ethane and propylene/propane by cellulose acetate-silica nanocomposite membranes, J. Membr. Sci., 423, 97-106 (2012).
38 L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008).   DOI   ScienceOn