Browse > Article
http://dx.doi.org/10.14478/ace.2014.1114

Effects of the Graphene Oxide on Glucose Oxidase Immobilization Capabilities and Sensitivities of Carbon Nanotube-based Glucose Biosensor Electrodes  

Park, Mi-Seon (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Kim, Do Young (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Jung, Min-Jung (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.26, no.1, 2015 , pp. 47-52 More about this Journal
Abstract
To improve both the GOD immobilization capability and sensitivity of MWCNTs-based biosensor electrode, the electrode was prepared by adding different quantities of GO. The addition of GO increased hydrophilicity and the surface free energy of electrodes for glucose sensing as well as the dispersion of MWCNTs. In addition, the GOD immobilization capability was enhanced and the sensitivity was improved up to $121{\mu}A\;mM^{-1}$ even though having a high $K_m$ value (0.105) when adding 0.05 g GO to 0.05 g MWCNTs. These experimental results were attributed to the fact that the improvement in dispersion stability for MWCNTs, hydrophilicity, and surface free energy of electrode surface due to the addition of GO affected GOD immobilization capability.
Keywords
graphene oxide; carbon nanotube; dispersion; immobilization;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 A. H. Keihan, S. Sajjadi, N. Sheibani, and A. A. Moosavi-Movahedi, A highly sensitive choline biosensor based on bamboo-like multiwallcarbon nanotubes/ionic liquid/Prussian blue nanocomposite, Sens. Actuators B, 204, 694-703 (2014).   DOI   ScienceOn
2 K. Yang and C. Y. Zhang, Simple detection of nucleic acids with a single-walled carbon-nanotube-based electrochemical biosensor, Biosens. Bioelectron., 28, 257-262 (2011).   DOI   ScienceOn
3 H. R. Yu, J. G. Kim, J. S. Im, T. S. Bae, and Y. S. Lee, Effects of oxyfluorination on a multi-walled carbon nanotube electrode for a high-performance glucose sensor, J. Ind. Eng. Chem., 18, 674-679 (2012).   DOI   ScienceOn
4 G. Fu, X. Yue, and Z. Dai, Glucose biosensor based on covalent immobilization of enzyme in sol-gel composite film combined with Prussian blue/carbon nanotubes hybrid, Biosens. Bioelectron., 26, 3973-3976 (2011).   DOI   ScienceOn
5 R. Nenkova, D. Ivanova, J. Vladimirova, and T. Godjevargova, New amperometric glucose biosensor based on cross-linking of glucose oxidase on silica gel/multiwalled carbon nanotubes/polyacrylonitrile nanocomposite film, Sens. Actuators B, 148, 59-65 (2010).   DOI   ScienceOn
6 D. S. Hecht, L. Hu, and G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater., 23, 1482-1513 (2011).   DOI   ScienceOn
7 V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Z. Boril, and K. S. Kim, Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications, Chem. Rev., 112, 6156-6214 (2012).   DOI   ScienceOn
8 D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., 39, 228-240 (2010).   DOI
9 Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22, 3906-3924 (2010).   DOI   ScienceOn
10 H. C. Tian, J. Q. Liu, and D. X. Wei, Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface, Biomaterials, 35, 2120-2129 (2014).   DOI   ScienceOn
11 Y. Gao, H. L. Yip, K. S. Chen, K. M. O'Malley, O. Acton, Y. Sun, G. Ting, H. Z. Chen, and A. K. Y. Jen, Surface doping of conjugated polymers by graphene oxide and its application for organic electronic devices, Adv. Mater., 23, 1903-1908 (2011).   DOI   ScienceOn
12 H. Wei, J. Zhu, S. Wu, S. Wei, and Z. Guo, Electrochromic polyaniline/ graphite oxide nanocomposites with endured electrochemical energy storage, Polymer, 54, 1820-1831 (2013).   DOI   ScienceOn
13 K. Sablok, V. Bhalla, P. Sharma, R. Kaushal, S. Chaudhary, and C. R. Suri, Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene, J. Hazard. Mater., 248-249, 322-328 (2013).   DOI   ScienceOn
14 B. Unnikrishnan, S. Palanisamy, and S. M. Chen, A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite, Biosens. Bioelectron., 39, 70-75 (2013).   DOI   ScienceOn
15 S. Sridevi, K. S. Vasu, N. Jayaraman, S. Asokan, and A. K. Sood, Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with specific dendrimer, Sens. Actuators B, 195, 150-155 (2014).   DOI   ScienceOn
16 M. S. Park, K. J. Yun, and Y. S. Lee, Electromagnetic Interference Shielding Efficiency Characteristics of Ammonia-treated Graphene oxide, Appl. Chem. Eng., 25, 613-618 (2014).   DOI   ScienceOn
17 S. H. Aboutalebi, A. T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H. K. Liua, and S. X. Dou, Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors, Energy Environ. Sci., 4, 1855-1865 (2011).   DOI   ScienceOn
18 D. Y. Kim, S. J. In, and Y. S. Lee, Effect of fluorination and ultrasonic washing treatment on surface characteristics of poly(ethylene terephthalate), Polymer (Korea), 37, 316-322 (2012).
19 Joseph Wang, Analytical electrochemistry 3rd, John Wiley & Sons Inc. (2006).
20 L. Yue, G. Pircheraghi, S. A. Monemian, and I. Manas-Zloczower, Epoxy composites with carbon nanotubes and graphene nanoplatelets-Dispersion and synergy effects, Carbon, 78, 268-278 (2014).   DOI   ScienceOn
21 Y. H. Kim, Contact Angle & Surface Energy, Prospectives of Industrial Chemistry, 8, 82-93 (2005).
22 L. Y. Meng and S. J. Park, Improvement of superhydrophobicity of multi-walled carbon nanotubes produced by fluorination, Carbon Lett., 13, 178-181 (2012).   DOI   ScienceOn
23 J. S. Im, J. Yun, J. G. Kim, T. S. Bae, and Y. S. Lee, The effect of carbon nanotube addition and oxyfluorination on the glucose-sensing capabilities of glucose oxidase-coated carbon fiber electrodes, Appl. Sur. Sci., 258, 2219-2225 (2012).   DOI   ScienceOn
24 S. M. Oh, Electrochemistry, 1st ed., 1-26, Freeacademy, Korea.
25 L. Cheng and S. Dong, Electrochemical behavior and electrocatalytic properties of ultrathin films containing silicotungstic heteropolyanion SiW12O404-, J. Electrochem. Soc., 147, 606-612 (2000).   DOI   ScienceOn
26 G. L. Long and J. D. Winefordner, Limit of detection. A closer look at the IUPAC definition, Anal. Chem., 55, 712A-724A (1983).
27 M. Moyo, J. O. Okonkwo, and N. M. Agyei, An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multi-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution, Enzyme Microb. Technol., 56, 28-34 (2014).   DOI   ScienceOn
28 T. S. Bae, E. Shin, J. S. Im, J. G. Kim, and Y. S. Lee, Effects of carbon structure orientation on the performance of glucose sensors fabricated from electrospun carbon fibers, J. Non-Cryst. Solids, 358, 544-549 (2012).   DOI   ScienceOn
29 H. Deng, A. K. L. Teo, and Z. Gao, An interference-free glucose biosensor based on a novel low potential redox polymer mediator, Sens. Actuators B, 191, 522-528 (2014).   DOI   ScienceOn
30 E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip, Biomed. Opt. Express, 5, 1636-1648 (2014).   DOI