Browse > Article
http://dx.doi.org/10.14478/ace.2014.1122

Optimization for Higher Sensitive Measurements of FET-type Sensors  

Sohn, Young-Soo (Department of Biomedical Engineering, Catholic University of Daegu)
Publication Information
Applied Chemistry for Engineering / v.26, no.1, 2015 , pp. 116-119 More about this Journal
Abstract
Field-effect transistor (FET)-based ion or biosensors have been intensively studied so far. Among many measurement methods, the variation of the drain current can be induced when ions or biomolecules are interacted with sensing membranes located on the gate insulator of FET. One of typical FET-type sensors is an ion-sensitive field-effect transistor (ISFET) utilized in this study. In ISFET, the voltage is usually applied to the reference electrode instead of the gate voltage. Firstly, the voltage applied to the reference electrode versus the drain current was observed, and the steepest slope in this graph was found. Using this point, the optimized condition was established for the larger variation of the drain current in the saturated region in response to the variation of the input in the dynamic range.
Keywords
Field-effect transistor; Optimization; Sensitivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measurement, IEEE Trans. Biomed. Eng., BME-17, 59-63 (1970).
2 Y.-S. Sohn, Field effect transistors for biomedical application, Appl. Chem. Eng., 24, 1-9 (2013).
3 K.-Y. Park, Y.-S. Sohn, C.-K. Kim, H.-S. Kim, Y.-S. Bae, and S.-Y. Choi, Development of FET-type albumin sensor for diagnosing nephritis, Biosens. Bioelectron., 23, 1904-1907 (2008).   DOI   ScienceOn
4 Y.-S. Sohn, C.-K. Kim, and S.-Y. Choi, Characteristics of a label-less electrochemical immunosensor based on a field-effect transistor for the detection of a biomarker in urine, Sensor Lett., 7, 640-643 (2009).   DOI
5 P. Bergveld, Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years, Sens. Actuators B, 88, 1-20 (2003).   DOI   ScienceOn
6 M. Kokot, Measurement of sub-nanometer molecular layer with ISFET without a reference electrode dependency, Sens. Actuators B, 157, 424-429 (2011).   DOI   ScienceOn
7 Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, 293, 1289-1292 (2001)   DOI   ScienceOn
8 A. Kim, C. S. Ah, H. Y. Yu, J.-H. Yang, I. B. Baek, C.-G. Ahn, C. W. park, M. S. Jun, and S. Lee, Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors, Appl. Phys. Lett., 91, 103901 (2007).   DOI   ScienceOn
9 E. Stern, J. K. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, Label-free immunodetection with CMOS-compatible semiconducting nanowires, Nature Lett., 445, 519-522 (2007).   DOI   ScienceOn
10 G. B. Kang, J. M. Park, S. G. Kim, J. G. Koo, J. H. Park, Y.-S. Sohn, and Y. T. Kim, Fabrication and characterisation of CMOS compatible silicon nanowire biosensor, Electronics Lett., 44, 953-955 (2008).   DOI   ScienceOn
11 M. J. Schoning and A. Pophossian, Recent advances in biologically sensitive field-effect transistors (BioFETs), Analyst, 127, 1137-1151 (2002).   DOI   ScienceOn
12 K.-I Chen, B.-R. Li, and Y.-T. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation, Nano Today, 6, 131-154 (20111).   DOI   ScienceOn
13 S.-K. Lee, Y.-S. Sohn, and S.-Y. Choi, Fabrication characteristics of $Al_2O_3$ pH-ion sensitive field-effect transistor fabricated using atomic layer deposition and sputter, Sensor Lett., 9, 3-6 (2011).   DOI
14 B. G. Streetman and S. K. Banerjee, Solid State Electronic Devices, 6th Ed., 239, Pearson Prentice Hall, New Jersey, USA (2006).