Browse > Article
http://dx.doi.org/10.14478/ace.2013.1081

Production of Biopolyols, Bioisocyanates and Biopolyurethanes from Renewable Biomass  

Jo, Yoon Ju (Department of Chemical Engineering, College of Engineering, Kyung Hee University)
Choi, Sung Hee (Department of Chemical Engineering, College of Engineering, Kyung Hee University)
Lee, Eun Yeol (Department of Chemical Engineering, College of Engineering, Kyung Hee University)
Publication Information
Applied Chemistry for Engineering / v.24, no.6, 2013 , pp. 579-586 More about this Journal
Abstract
The shortage of fossil fuel and problem of greenhouse gas exhaustion drive the production of biopolymer in a environment-friendly manner. Polyurethane is a polymer formed by reacting an isocyanate (-NCO) with a polyol (-OH) to form urethane link (-NHCOO-). Polyurethane is one of the most widely used polymers in automobile, construction and chemical industries. Two monomers for the polymerization of polyurethane, polyols and isocyanates, can be produced from renewable biomass such as plant oil, cellulose, lignin and etc. Biopolyol production from plant oil has already been implemented in commercial-scale production. In this paper, recent progresses on bio-based approaches on the production of biopolyols, bio-isocyanates and bio-substituent or isocyanate from bio-feedstock are reviewed alongside polymerization and characterization of biopolyurethane for industrial applications.
Keywords
biopolyol; bioisocyanate; biopolyurethane; renewable biomass; bio-feedstock;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Yao, M. Yoshioka, and N. Shiraishi, Water-absorbing polyurethane foams from liquefied starch, J. Appl. Polym. Sci., 60, 1939 (1996).   DOI   ScienceOn
2 F. Chen and Z. Lu, Liquefaction of wheat straw and preparation of rigid polyurethane foam from the liquefaction products, J. Appl. Polym. Sci., 111, 508 (2009).   DOI   ScienceOn
3 F. Yu, Z. Le, P. Chen, Y. Liu, X. Lin, and R. Ruan, Atmospheric pressure liquefaction of dried distillers grains (DDG) and making polyurethane foams from liquefied DDG, Appl. Biochem. Biotechnol., 148, 235 (2008).   DOI   ScienceOn
4 Y. Yan, H. Pang, X. Yang, R. Zhang, and B. Liao, Preparation and characterization of water-blown polyurethane foams from liquefied cornstalk polyol, J. Appl. Polym. Sci., 110, 1099 (2008).   DOI   ScienceOn
5 E. M. Hassan and N. Shukry, Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues, Ind. Crop. Prod., 27, 33 (2008).   DOI   ScienceOn
6 D. T. Johnson and K. A. Taconi, The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production, Environ. Prog., 26, 338 (2007).   DOI   ScienceOn
7 Y. Wang, J. Wu, Y. Wan, H. Lei, F. Yu, P. Chen, X. Lin, Y. Liu, and R. Ruan, Liquefaction of corn stover using industrial biodiesel glycerol, Int. J. Agric. Biol. Eng., 2, 32 (2009).
8 U.S. Patent, 0,054,059 (2011).
9 S. Kumar, K. S. Manjula, and Siddaramaiah, Castor oil-based polyurethane-polyester nonwoven fabric composites: mechanical properties, chemical resistance, and water sorption behavior at different temperatures, J. Appl. Polym. Sci., 105, 3153 (2007).   DOI   ScienceOn
10 A. Zlatanic, C. Lava, W. Zhang, and Z. S. Petrovic, Effect of structure on properties of polyols and polyurethanes based on different vegetable oils, J. Polym. Sci. Polym. Phys., 42, 809 (2004).   DOI   ScienceOn
11 S. Hu, C. Wan, and Y. Li, Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw, Bioresour. Technol., 103, 227 (2012).   DOI   ScienceOn
12 G. Cayli and S. Kusefoglu, Biobased polyisocyanates from plant oil triglycerides: Synthesis, polymerization, and characterization, J. Appl. Pol. Sci., 109, 2948 (2008).   DOI   ScienceOn
13 L. Hojabri, H. Kong, and S. S. Narine, Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization, Biomacromolecules, 10, 884 (2009).   DOI   ScienceOn
14 L. Hojabri, X. Kong, and S. S. Narine, Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane, J. Polym. Sci. Polym. Chem., 48, 3302 (2010).   DOI   ScienceOn
15 W. G. Glasser, O. H. H. Hsu, D. L. Reed, R. C. Forte, and L. C. F. Wu, Lignin-derived polyols, polyisocyanates, Urethane Chemistry and Applications, 172, 311, Kenneth N. Edwards Enterprises, United States (1981).
16 D. V. Palaskar, A. Boyer, E. Cloutet, C. Alfos, and H. Cramail, Synthesis of biobased polyurethane from oleic and ricinoleic acids as the renewable resources via the AB-type self-condensation approach, Biomacromolecules, 11, 1202 (2010).   DOI   ScienceOn
17 B. Tamami, S. Sohn, and G. L. Wilkes, Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks, J. Appl. Polym. Sci., 92, 883 (2004).   DOI   ScienceOn
18 Z. S. Petrovic, M. J. Cevallos, I. Javni, D. W. Schaefer, and R. Justice, Soy-oil-based segmented polyurethanes, J. Polym. Sci. Polym. Phys., 43, 3178 (2005).
19 L. Ubaghs, N. Fricke, H. Keul, and H. Hocker, Rapid communications, polyurethanes with pendant hydroxyl groups: synthesis and characterization, Macromol. Rapid Commun., 25, 517 (2004).   DOI   ScienceOn
20 I. Javni, Z. S. Petrovic, A. Guo, and R. Fuller, Thermal stability of polyurethanes based on vegetable oils, J. Appl. Polym. Sci., 77, 1723 (2000).   DOI
21 X. Kong, J. Yue, and S. S. Narine, Physical properties of canola oil based polyurethane networks, Biomacromolecules, 8, 3584 (2007).   DOI   ScienceOn
22 A. Terheiden and R. Hubel, Scientific approach to the question 'Why natural oil based polyols affect the physical properties of conventional slabstock foam, Polyurethanes technical conference, American Chemistry Council, 620, American Chemistry Council and Arlington, VA., United States (2010).
23 M. Ionescu, Z. S. Petrovic, and X. Wan, Ethoxylated soybean polyols for polyurethanes, J. Polym. Environ., 15, 237 (2007).   DOI
24 J. S. Ko, J. H. Lee, and K. C. Sung, A Study on the powders for makeup cosmetics, J. Kor. Oil Chem. Soc., 29, 11 (2012).
25 K. I. Kim and S. B. Kim, Research trend of bio-Pplyurethane, KIC News, 15, 11 (2012).
26 L. Gouveia and A. C. Oliveira, Microalgae as a raw material for biofuels production, J. Ind. Microbiol. Biotechnol., 36, 269 (2009).   DOI   ScienceOn
27 R. C. Saxena, D. K. Adhikari, and H. B. Goyal, Biomass-based energy fuel through biochemical routes: a review, Renew. Sust. Energ. Rev., 13, 167 (2009).   DOI   ScienceOn
28 A. Demirbas, Global biofuel strategies, Energy Edu. Sci. Technol., 17, 27 (2006).
29 J. Hill, E. Nelson, D. Tilman, S. Polasky, and D. Tiffany, Environmental, economic, and energetic costsand benefits of biodiesel and ethanol biofuels, PNAS, 103, 11206 (2006).   DOI   ScienceOn
30 S. G. Wettstein, D. M. Alonso, E. I. Gürbüz, and J. A. Dumesic, A roadmap for conversion of lignocellulosic biomass to chemicals and fuels, Curr. Opin. Chem. Eng., 1, 218 (2012).   DOI   ScienceOn
31 A. K. Mohanty, M. Misra, and G. Hinrichsen, Biodegradable polymers and biocomposites: an overview, Macromol. Mater. Eng., 276/277, 1 (2000).   DOI   ScienceOn
32 D. P. Pfister, Y. Xia, and R. C. Larock, Recent advances in vegetable oil‐based polyurethanes, Chem. Sus. Chem., 4, 703 (2011).   DOI
33 J. Huang, L. Zhang, H. Wei, and X. Cao, Soy protein isolate/kraft lignin composites compatibilized with methylene diphenyl diisocyanate, J. Appl. Polym. Sci., 93, 624 (2004).   DOI   ScienceOn
34 S. H. Lee and S. Wang, Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent, Compos. Pt. A-Appl. Sci. Manuf., 37, 80 (2006).   DOI   ScienceOn
35 C. K. Lyon, V. H. Garrett, and L. A. Goldblatt, Rigid urethane foams from blown castor oils, J. Am. Oil Chem. Soc., 41, 23 (1964).   DOI
36 M. A. Mosiewicki, G. A. Dell'arciprete, M. I. Aranguren, and N. E. Marcovich, Polyurethane foams obtained from castor oil-based polyol and filled with wood flour, J. Compos. Mater., 43, 3057 (2009).   DOI
37 A. Guo, W. Zhang, and Z. S. Petrovic, Structure-property relationships in polyurethanes derived from soybean oil, J. Mater. Sci., 15, 4914 (2006).
38 Y. H. Hu, Y. Gao, D. N. Wang, C. P. Hu, S. Zu, L. Vanoverloop, and D. Randall, Rigid polyurethane foam prepared from a rape seed oil based polyol, J. Appl. Polym. Sci., 84, 591 (2002).   DOI   ScienceOn
39 V. B. Veronese, R. K. Menger, M. M. C. Forte, and C. L. Petzhold, Rigid polyurethane foam based on modified vegetable oil, J. Appl. Polym. Sci., 120, 530 (2011).   DOI   ScienceOn
40 H. Deka and N. Karak, Prog. Bio-based hyperbranched polyurethanes for surface coating applications, Org. Coat., 66, 192 (2009).   DOI   ScienceOn
41 A. Kaushik and P. Singh, Synthesis and characterization of castor oil/trimethylol propane polyol as raw materials for polyurethanes using time-of-flight mass spectroscopy, Int. J. Polym. Anal. Charact, 10, 373 (2005).   DOI   ScienceOn
42 M. D. Bhabhe and V. D. Athawale, Chemoenzymatic synthesis of urethane oil based on special functional group oil, J. Appl. Polym. Sci., 69, 1451 (1998).   DOI
43 C. S. Lee, T. L. Ooi, C. H. Chuah, and S. Ahmad, Rigid polyurethane foam production from palm oil-based epoxidized diethanolamides, J. Am. Oil Chem. Soc., 84, 1161 (2007).   DOI
44 A. Guo, D. Demydov, W. Zhang, and Z. S. Petrovic, Polyols and polyurethanes from hydroformylation of soybean oil, J. Polym. Environ., 10, 49 (2002).   DOI   ScienceOn
45 D. Maldas and N. Shiraishi, Liquefaction of biomass in the presence of phenol and using alkaline and salts as the catalyst, Biomass Bioenerg., 12, 273 (1997).   DOI   ScienceOn
46 Z. S. Petrovic, W. Zhang, and I. Javni, Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis, Biomacromolecules, 6, 713 (2005).   DOI   ScienceOn
47 N. Shiraishi, S. Onodera, M. Ohtani, and T. Masumoto, Dissolution of etherified wood into polyhydric alcohols or bisphenol A and their application in preparing wooden polymeric materials, Mokuzai Gakkaishi, 31, 418 (1985).
48 S. Pu and N. Shiraishi, Liquefaction of wood without a catalyst, I.: time course of wood liquefaction with phenols and effects of wood/phenol ratios, Mokuzai Gakkaishi, 39, 446 (1993).
49 M. H. Alma, M. Yoshioka, Y. Yao, and N. Shiraishi, Phenolation of wood using oxalic acid as a catalyst: effect of temperature and hydrochloric acid addition, J. Appl. Polym. Sci., 61, 675 (1996).   DOI
50 T. Yamada and H. Ono, Rapid liquefaction of lignocellulosic waste by using ethylene carbonate, Bioresour. Technol., 70, 61 (1999).   DOI   ScienceOn
51 S. P. Mun and E. M. Hassan, Liquefaction of lignocellulosic biomass with dioxane/polar solvent mixtures in the presence of an acid catalyst, J. Ind. Eng. Chem., 10, 473 (2004).
52 E. M. Hassan and S. P. Mun, Liquefaction of pine bark using phenols and lower alcohols with methane sulfonic acid catalyst, J. Ind. Eng. Chem., 8, 359 (2002).
53 Y. Yao, M. Yoshioka, and N. Shiraishi, Rigid polyurethane foams from combined liquefaction mixtures of wood and starch, Mokuzai Gakkaishi, 41, 659 (1995).