Browse > Article

Electrochemical Ceramic Membrane Reactors  

Uhm, Sunghyun (Advanced Materials & Processing Center, Institute for Advanced Engineering)
Park, Jae Layng (Advanced Materials & Processing Center, Institute for Advanced Engineering)
Seo, Minhye (Advanced Materials & Processing Center, Institute for Advanced Engineering)
Publication Information
Applied Chemistry for Engineering / v.24, no.4, 2013 , pp. 337-343 More about this Journal
Abstract
Membrane reactors have been showing a promising future and attracted increasing attention in the scientific community as they possess advantages in terms of enhanced catalytic activity and selectivity, combination of processes (reaction and separation), simplicity in process design, and safety in operation. In particular, solid electrolyte membrane reactor principles are realized in fuel cells, electrolyzers and reactors for hydrogenation of carbon dioxide and other economically viable reactions. In this review, as a young generation of ion conducting materials, high temperature proton conductors are discussed in terms of the current status of material development and their various applications.
Keywords
electrochemical ceramic membrane reactors; proton conducting ceramics; electrochemical conversion; solid electrolyte; solar fuels;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Dittmeyer and J. Caro, Catalytic Membrane Reactors; Handbook of Heterogeneous Catalysis, 10, 2198, John Wiley & Sons, Inc. (2008).
2 A. Basile and F. Gallucci, Membranes for Membrane Reactors: Preparation, Optimization and Selection, John Wiley & Sons, Inc. (2010).
3 J. Zaman and A. Chakma, J. Membrane Sci., 92, 1 (1994).   DOI   ScienceOn
4 F. Gallucci, E. Fernandez, P. Corengia, and M.-V. S. Annaland, Chem. Eng. Sci., 92, 40 (2013).   DOI   ScienceOn
5 T. J. Mazanec, Solid State Ionics, 70, 11 (1994).
6 M. Stoukides, Catal. Rev. Sci. Eng., 42, 1 (2000).   DOI   ScienceOn
7 K. Sundmacher, L. K. Rihko-Struckmann, and V. Galvita, Catal. Today, 104, 185 (2005).   DOI   ScienceOn
8 T. Thampan, S. Malhotra, J. Zhang, and R. Datta, Catal. Today, 67, 15 (2001).   DOI   ScienceOn
9 J. Larminie and A. Dicks, Fuel Cell Systems Explained 2nd Edition, John Wiley and Sons, Inc. (2003).
10 S. Mclntosh and R. J. Gorte, Chem. Rev., 104, 4845 (2004).   DOI   ScienceOn
11 H. Uchida, N. Maeda, and H. Iwahara, Solid State Ionics, 11, 117 (1983).   DOI   ScienceOn
12 H. Iwahara, H. Uchida, and S. Tanaka, Solid State Ionics, 9, 1021 (1983).
13 H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, J. Electrochem. Soc., 135, 529 (1988).   DOI   ScienceOn
14 K. D. Kreuer, Annu. Rev. Mater. Res., 33, 333 (2003).   DOI   ScienceOn
15 K. D. Kreuer, Solid State Ionics, 136, 149 (2000).
16 T. Norby, M. Wideroe, R. Glocker, and Y. Larring, Dalton T., 3012 (2004).
17 R. Reijers and W. Haije, Literature Review on High Temperature Proton Conducting Materials, ECN-E-08-091, ECN, Netherlands (2008).
18 R. C. T. Slade, and N. Singh, Solid State Ionics, 46, 111 (1993).
19 D. A. Stevenson, N. Jiang, R. M. Buchanan, and F. E. G. Henn, Solid State Ionics, 62, 279 (1993).   DOI   ScienceOn
20 S. V. Bhide and A. V. Virkar, J. Electrochem. Soc., 146, 2038 (1999).   DOI   ScienceOn
21 P. Babilo and S. M. Haile, J. Am. Ceram. Soc., 88, 2362 (2005).   DOI   ScienceOn
22 S. Tao and J. T. S. Irvine, Adv. Mater., 18, 1581 (2006).   DOI   ScienceOn
23 C. Zuo, S. Zha, M. Liu, M. Hatano, and M. Uchiyama, Adv. Mater., 18, 3318 (2006).   DOI   ScienceOn
24 A. L. Despotuli and V. I. Nikolaichic, Solid State Ionics, 60, 275 (1993).   DOI   ScienceOn
25 J. Maier, Nat. Mater., 4, 805 (2005).   DOI   ScienceOn
26 H. Iwahara, Solid State Ionics, 125, 271 (1999).   DOI   ScienceOn
27 K. Xie, Y. Zhang, G. Meng, and J. T. S. Irvine, J. Mater. Chem., 21, 195 (2011).   DOI   ScienceOn
28 F. Lefebvre-Joud, G. Gauthier, and J. Mougin, J. Appl. Electrochem., 39, 535 (2009).   DOI
29 U. S. Patent 7, 157,166 (2007).
30 C. Graves, S. D. Ebbesen, M. Mogensen, and K. S. Lackner, Renew. Sust. Energ. Rev., 15, 1 (2011).   DOI   ScienceOn
31 C. Graves, S. D. Ebbesen, and M. Mogensen, Solid State Ionics, 192, 398 (2011).   DOI   ScienceOn
32 A. J. Morris, G. J. Meyer, and E. Fujita, Acc. Chem. Res., 12, 1983 (2009).
33 S. Liu, X. Tan, K. Li, and R. Hughes, Catal. Rev., 43, 147 (2001).   DOI   ScienceOn
34 G. Marnellos and M. Stoukides, Solid State Ionics, 175, 597 (2004).   DOI   ScienceOn
35 K.-H. Song, J.-h. Ryu, and J.-S. Chung, Korean Chem. Eng. Res., 47, 519 (2009).
36 C. G. Vayenas and C. G. Koutsodontis, J. Chem. Phys., 128, 182506 (2008).   DOI   ScienceOn
37 P. Vernoux and C. G. Vayenas, Prog. Surf. Sci., 86, 83 (2011).   DOI   ScienceOn
38 Q. Fu, C. Mabilat, M. Zahid, A. Brisse, and L. Gautier, Energy Environ. Sci., 3, 1382 (2010).   DOI   ScienceOn
39 J. A Trainham, J. Newman, C. A. Bonino, and P. G. Hoertz, Curr. Opin. Chem. Eng., 1, 204 (2012).   DOI   ScienceOn
40 T. J. Meyer, J. M. Papanikolas, and C. M. Heyer, Catal. Lett., 141, 1 (2011).   DOI
41 G. Centi and S. Perathoner, Catal. Today, 148, 191 (2009).   DOI   ScienceOn