Browse > Article

Net Energy Analysis of the Microalgae Biorefinery  

Lee, See Hoon (Department of Resources and Energy Engineering, Chonbuk National University)
Kook, Jin Woo (Department of Resources and Energy Engineering, Chonbuk National University)
Na, Jeong Gal (Clean Fuel Department, Korea Institute of Energy Research)
Oh, You-Kwan (Clean Fuel Department, Korea Institute of Energy Research)
Publication Information
Applied Chemistry for Engineering / v.24, no.3, 2013 , pp. 285-290 More about this Journal
Abstract
Recently a novel bio refinery process with using nonedible biomass, especially microalgae, has been developed in order to directly reduce $CO_2$ concentration from flue gas and simultaneously produce renewable bio fuel. Micro algae-to-biofuel processes are composed of microalgae cultivation, harvesting, lipid extraction, and bio fuel conversion. So, there are concerns about the energy efficiencies of bio refinery processes. In this study, the net energy ratio of microalgae processes were calculated for the microalgae produced from a pilot photobioreacto using $CO_2$ released from coal combustion. In this study, trans-esterification and pyrolysis processes were used to analyze the net energy efficiencies. Micro algae-to-biofuel processes might produce bio fuels with the higher energy than that of the total consumed energy for cultivation, harvesting, extraction and conversion. If the lipid content of microalgae was higher, the trans-esterification conversion process was more effective than that of pyrolysis process.
Keywords
microalgae; biorefinery; biofuel; net energy ratio;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 W. H. Eom, J. H. Kim, and S. H. Lee, Appl. Chem. Eng., 23, 23 (2012).
2 A. M. Doyle, and J. A. Bell, Algal Biofuels, Nova Science Publishers, Inc., Newyork, USA (2011).
3 E. Suali and R. Sarbatly, Renew. Sust. Energy Rev., 16, 4316 (2012).   DOI   ScienceOn
4 M. K. Lam, K. T. Lee, and A. R. Mohamed, Int. J. Green. Gas Cont., 10, 456 (2012).   DOI
5 L. F. Razon and R. R. Tan, Appl. Energ., 88, 3507 (2011).   DOI   ScienceOn
6 H. H. Khoo, P. N. Sharratt, P. Das, R. K. Balasubramanian, P. K. Naraharisetti, and S. Shaik, Bioresource Technol., 103, 5800 (2011).
7 K. Wang, R. C. Brown, S. Homsy, L. Martinez, and S. S. Sidhu, in press, http://dx.doi.org/10.1016/j.biortech.2012.08.016.
8 O. Jorquera, A. Kiperstok, E. A. Sales, M. Embirucu, and M. L. Ghirardi, Bioresource Technol., 101, 1406 (2010).   DOI   ScienceOn
9 L. Xu, D. W. F. Brilman, J. A. M. Withag, G. Brem, and S. Kersten, Bioresource Technol., 102, 5113 (2011).   DOI   ScienceOn
10 H. S. Lee, S. G. Jeon, Y. K. Oh, K. H. Kim, S. H. Chung, J. G. Na, and S. D. Yeo, Korean Chem. Eng. Res., 50, 672 (2012).   DOI   ScienceOn
11 S. H. Lee, M. S. Eom, K. S. Yoo, N. C. Kim, J. K. Jeon, Y. K. Park, B. H. Song, and S. H. Lee, J. Anal. Appl. Pyrolysis, 83, 110 (2008).   DOI   ScienceOn
12 S. H. Lee, Y. L. Son, C. B. Ko, K. B. Choi, and J. H. Kim, J. Korean Ind. Eng. Chem., 20, 391 (2009).