Browse > Article

Effect of Flame Retardants on Flame Retardancy of Flexible Polyurethane Foam  

Kwon, Ohdeok (Hyundai-Kia Motors Co., Ltd.)
Lee, Ju-Chan (Nuclear Fuel Cycle Waste Treatment Research Division, Korea Atomic Energy Research Institute)
Seo, Ki-Seog (Nuclear Fuel Cycle Waste Treatment Research Division, Korea Atomic Energy Research Institute)
Seo, Chung-Seok (Nonproliferation System Research Division, Korea Atomic Energy Research Institute)
Kim, Sang Bum (Department of Chemical Engineering, Kyonggi University)
Publication Information
Applied Chemistry for Engineering / v.24, no.2, 2013 , pp. 208-213 More about this Journal
Abstract
In this study, the effect of phosphorus flame retardants on the flame retardancy of the flexible polyurethane foam (PUF) was investigated. Tetramethylene bis(orthophosphorylurea) [TBPU] and phosphinyl alkylphosphate ester [CR-530], resorcinol bis diphenylphosphate [RDP], triethyl phosphate [TEP] were used as flame retardants. The results of thermogravimetric analysis (TGA) indicate that TBPU added PUF produces more charred residues than the other flame retardant added PUF. It was found that TBPU added PUF exhibits low mean heat release rate (HRR), peak HRR, effective heat of combusion (EHC), mass loss rate (MLR), CO yield and $CO_2$ compared to those other flame retardants.
Keywords
flame retardant; flexible polyurethane foam; thermogravimetric analysis; cone calorimeter; limited oxygen index;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Z. Tang, M. Valer, J. M. Anderson, J. W. Miller, M. L. Listemann, P. L. McDaniel, D. K. Morita, and W. R. Furlan, Polymer, 43, 6471 (2002).   DOI   ScienceOn
2 S. V. Levchik and E. D. Weil, Polym Int., 53, 1585 (2004).   DOI   ScienceOn
3 M. Thirumal, K. N. Singha, and D. Khastgir, J. Appl. Polym. Sci., 116, 2260 (2010).
4 L. Jin and M. Dezhu, J. Appl. Polym. Sci., 84, 2206 (2002).   DOI   ScienceOn
5 L. V. Luchkina, A. A. Askadskii, and K. A. Bychko, Russ. J. Appl. Chem., 78, 1337 (2005).   DOI
6 H. Mahfuz, V. K. Rangar, M. S. Islam, and S. Jeelani, Composites. Part A, 35, 453 (2004).   DOI   ScienceOn
7 W. Zatorski, Z. K. Brzozowski, and A. Kolbrecki, Polym. Degrad. Stab., 93, 2071 (2008).   DOI   ScienceOn
8 M. Thirumal, D. Khastgir, and N. K. Singha, J. Macromol. Sci., Pure Appl. Chem., 46, 704 (2009).   DOI   ScienceOn
9 J. Ni, Q. Tai, and H. Lu, Poly. Adv. Technol., 21, 392 (2010).   DOI   ScienceOn
10 J. Kim, K. Lee, J. Bae, J. Yang, and S. Hong, Polym. Degrad. Stab., 79, 201 (2003).   DOI   ScienceOn
11 B. N. Jang and J. H. Choi, Poly. Sci. Technol., 20, 8 (2009).
12 M. Modesti, L. Zanella, A. Lorenzetti, R. Bertani, and M. Gleria, Polym. Degrad. Stab., 87, 287 (2005).   DOI   ScienceOn
13 G. W. Lee and G. E. Kim, KIFSE, 17, 76 (2003).
14 R. H. Kramer, M. Zammarano, and G. T. Linteris, Polym. Degrad. Stab., 95, 1115 (2010).   DOI   ScienceOn
15 C. H. Kim, W. J. Seo, O. D. Kwon, and S. B. Kim, Appl. Chem. Eng., 2, 540 (2011).
16 Y. J. Chung, Y. Kim, and S. Kim, J. Ind. Eng. Chem., 15, 888 (2009).   DOI   ScienceOn
17 J. G. Quintire, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).
18 Y. J. Chung, H. M. Lim, E. Jin, and J. K. Oh, Appl. Chem. Eng., 22, 439 (2011).
19 M. Delichatsios, B. Paroz, and A. Bhargava, Fire Saf. J., 38, 219 (2003).   DOI   ScienceOn
20 M. J. Spearpoint and G. J. Quintiere, Combust. Flame, 123, 308 (2000).   DOI   ScienceOn
21 B. G. Lee, J. H. Lee, and D. S. Bang, Elast. Comp., 46, 164 (2011).
22 S. B. Kim, Y. J. Sin, and Y. H. Kim, KIGAS, 5, 79 (2001).
23 D Drysdale, Fire and cellular polymers, Elsevier Applied Science, London (1987).
24 A. Magnusson, S. Lundmark, and A. Andersson, UTECH Europe, 2006, 63 (2006).