Browse > Article

A Study on Discoloration of Traditional Paintings by an Inorganic Pigment  

Kim, Dong Won (Department of Industrial Chemistry, Pukyong National University)
Kwak, Sam Tak (Department of Industrial Chemistry, Pukyong National University)
Seo, Yong Soo (Environmental Research Center, Pukyong National University)
Kim, Il Kyu (Department of Environmental Engineering, Pukyong National University)
Moon, Myung Jun (Department of Industrial Chemistry, Pukyong National University)
Publication Information
Applied Chemistry for Engineering / v.23, no.6, 2012 , pp. 567-571 More about this Journal
Abstract
The discoloration of traditional paintings could be induced by various chemical reactions of inorganic pigments due to temperature, humidity, light and air pollution. In this study, we made artificial samples including azurite and malachite as inorganic pigments using the traditional method on hanji called 'Korean paper'and investigated the artificial aging process occurred by the interaction between pigments and environmental factors. It was found that the azurite was influenced by the humidity of weathering tests and the salt fog of salt spray tests according to XRD and TGA results. However, it was shown that the malachite was chemically changed by the ultraviolet radiation of weathering tests and UV radiation tests according to color difference and TGA results.
Keywords
malachite; azurite; traditional painting; discoloration; inorganic pigment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. S. Han and J. O. Hong, Conservation studies, 24, 132 (2000).
2 J. H. Cheon and S. H. Kim, Conservation Science in Museum, 3, 21 (2001).
3 J. S. Kim, Conservation and Restoration of Cultural assets, BKworld, 52 (2001).
4 O. Enguita, T. Calderon, M. T. Fernandez-Jimenez, P. Beneitez, A. Millan, and G. Garcia, Nucl. Instrum. Meth. B, 219, 53 (2004).
5 R. L. Frost, Z. Ding, J. T. Kloprogge, and W. N. Martens, Thermochim. Acta, 390, 133 (2002).   DOI   ScienceOn
6 M. Odlyha, N. S. Cohen, G. M. Foster, and R. H. West, Thermochim. Acta, 365, 53 (2000).   DOI   ScienceOn
7 M. Odlyha, N. S. Cohen, and G. M. Foster, Thermochim. Acta, 365, 35 (2000).   DOI   ScienceOn
8 M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, and E. Tognoni, Spectrochim. Acta B, 56, 915 (2001).   DOI   ScienceOn
9 J. O. Hong and K. Y. Jung, Conservation studies, 13, 73 (1992).
10 N. C. Cho, J. O. Hong, W. S. Moon, and J. J. Hwang, Conservation studies, 21, 119 (2000).
11 H. S. Moon, J. J. Hwang, N. C. Cho, J. U. Hong, D. I. Gang, and M. H. Lee, NajuBogam-ri 3HoBun, National Research Institute of Cultural Heritage, 77 (2001).
12 H. S. Moon, J. J. Hwang, D. I. Gang, and M. H. Lee, Seosamreung Teasil, National Research Institute of Cultural Heritage, 400 (1999).
13 H. S. Moon, N. C. Cho, J. U. Hong, and J. J. Hwang, Experimental study on Muryangsujeon of Buseoksa Temple, 380 (2002).
14 Color name and Hue of Korea traditional standard, National Museum of Contemporary Art, 36 (1991).
15 Method for specification of color differences for opaque materials, KSA 0063, KSA (Korean Standard Associaiton) (2006).
16 T. Hatakeyama and L. Zhenhai, Handbook of Thermal Analysis, John Wiley & Sons Ltd, West Sussex PO19 1UD (1999).