Browse > Article

Antioxidative Activity and Componential Analysis of Chamaecyparis obtusa Leaf Extract  

Lee, Dong Sook (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology)
Lim, Myoung Sun (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology)
Kwan, Soon Sik (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology)
Kim, Sun Young (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology)
Park, Soo Nam (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology)
Publication Information
Applied Chemistry for Engineering / v.23, no.1, 2012 , pp. 93-99 More about this Journal
Abstract
In this study, the evaluation of antioxidative activity and componential analysis of C. obtusa leaf extracts was carried out. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of C. obtusa leaf extracts on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system were investigated using the luminol-dependent chemiluminescence assay. The ethyl acetate fraction ($OSC_{50}$; 0.22 ${\mu}g/mL$) and aglycone fraction of C. obtusa leaf extracts (0.20 ${\mu}g/mL$) showed about 7 times more prominent ROS scavenging activity than L-ascorbic acid (1.50 ${\mu}g/mL$). The cellular protective effects of fractions obtained from C. obtusa leaf extracts on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The ethyl acetate fraction and aglycone fraction of C. obtusa leaf extracts showed the cellular protective effects in a concentration dependent manner (5~25 ${\mu}g/mL$). The inhibitory effect ($IC_{50}$) of ethyl acetate fraction and aglycone fraction on tyrosinase exhibited 74.43 and 53.80 ${\mu}g/mL$, repectively. The aglycone fraction showed four times higher tyrosinase inhibitory effect than arbutin (226.88 ${\mu}g/mL$), known as a whitening agent. The aglycone fraction of C. obtusa leaf extracts showed three bands in TLC chromatogram and three peaks in HPLC chromatogram (360 nm). Three compounds were identified as taxifolin, quercetin and kaempferol. These results indicate that the fractions of C. obtusa leaf extracts can function as antioxidants in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against reactive oxygen species. The fractions of C. obtusa leaf extracts can be applicable to new functional cosmetics for antioxidan and whitening effects.
Keywords
Chamaecyparis obtusa leaf extracts; antioxidative activity; flavonoids; taxifolin; quercetin;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 D. Harman, Mutat. Res., 275, 257 (1992).   DOI   ScienceOn
2 B. A. Jurkiewicz and G. R. Buettner, Photochem Photobiol., 59, 1 (1994).   DOI   ScienceOn
3 L. Packer, Free Radical Damage and its Control, ed. C. A. Rice- Evans, R. H. Burdon, 28, 239, Elsevier Science, Amsterdam (1994).
4 B. A. Jurkiewicz, D. L. Bissett, and G. R. Buetter, J. Invest. Dermatol., 104, 484 (1995).   DOI   ScienceOn
5 E. Cadenas, Ann. Rev. Biochem., 58, 79 (1989).   DOI   ScienceOn
6 A. Naqui, B. Chance, and E. Cadenas, Ann. Rev. Biochem., 55, 137 (1986).   DOI   ScienceOn
7 J. C. Fantone and P. A. Ward, Ann. J. Path., 107, 395 (1982).
8 J. H. Jang, C. Lee, S. C. Kim, J. W. Chung, and C. I. Park, J. Soc. Cosmet. Scientists Korea, 36, 79 (2010).
9 S. E. Lee, E. M. Ju, and J. H. Kim, Environ. Toxicol., 15, 147 (2000).
10 W. Ma, M. Wlaschek, P. Brenneisen, L. A. Schneider, C. Hommel, C. Hellweg, H. Sauer, M. Wartenberg, G. Herrmann, C. Meewes, P. Boukamp, and K. Scharffetter-Kochanek, Experimental Cell Research, 274, 299 (2002).   DOI   ScienceOn
11 S. N. Park, J. Soc. Cosmet. Sci. Kor., 23, 75 (1997).
12 R. G. Allen and M. Tresini, Free Radical Biology and Medicine, 28, 463 (2000).   DOI   ScienceOn
13 B. A. Jurkiewicz, D. L. Bissett, and G. R. Buetter, J. Invest. Dermatol., 104, 484 (1995).   DOI   ScienceOn
14 K. H. Jang and S. S. Roh, The Journal of Daejeon Oriental Medicine, 13, 289 (2004).
15 I. K. Lee, B. S. Yun, J. P. Kim, S. H. Chung, G. S. Shim, and I. D. Yoo, Kor. J. Pharmacogn, 29, 163 (1998).
16 M. J. Park, W. S. Choi, H. Y. Kang, K. S. Gwak, G. S. Lee, E. B. Jeung, and I. G. Choi, J. Microbiology, 48, 496 (2010).   DOI
17 J. H. Lee, B. K. Lee, J. H. Kim, S. H. Lee, and S. K. Hong, J. Microbiol. Biotechnol, 19, 391 (2009).   DOI   ScienceOn
18 S. Koyama, Y. Yamaguchi, S. Tanaka, and J. Motoyoshiya, Gen Pharmacol., 28, 797 (1997).   DOI   ScienceOn
19 J. K. Yang, M. S. Choi, W. T. Seo, D. Lee R. Sang, W. Han, and G. W. Cheong, Fitoterapia, 78, 149 (2007).   DOI   ScienceOn
20 H. S. Kim, S. K. Han, and J. Y. Mang, Korean Journal of Odor Research and Engineering, 8, 111 (2009).
21 M. J. Kim and K. R. Im, J. Soc. Cosmet. Sci. Korea, 35, 143 (2009).