Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.6.648

Hydrogen Recombination over Pt/TiO2 Coated Ceramic Honeycomb Catalyst  

Kang, Youn Suk (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University)
Kim, Sung Su (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University)
Seo, Phil Won (Department of Research & Development, Ceracomb Co., Ltd.)
Lee, Seung Hyun (Department of Research & Development, Ceracomb Co., Ltd.)
Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University)
Publication Information
Applied Chemistry for Engineering / v.22, no.6, 2011 , pp. 648-652 More about this Journal
Abstract
Passive autocatalytic recombiner (PAR) is considered as an explosive gas control system in operating NPP plants. This work investigates and evaluates hydrogen recombination performance over manufactured $Pt/TiO_2$ catalysts. When the space velocity increases, the hydrogen conversion decreased, while hydrogen depletion rate (g/sec) increases highly in $35000{\sim}100000hr^{-1}$ Gas Hourly Space Velocity (GHSV). Hydrogen conversion and depletion rate with Pt loading is investigated. As a result, there were no differences in the hydrogen conversion, but exothermic heating rate (K/sec) is increases as Pt loading increases. The catalyst showes a high hydrogen conversion efficiency of 80% under atmospheric conditions.
Keywords
nuclear power plant; hydrogen; catalyst; recombination; PAR;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. Kim, S.-W. Hong, S.-B. Kim, and H.-D. Kim, J. Computational Fluids Engine., 10, 9 (2005).
2 M. Rinnemo, O. Deutschmann, F. Behrendt, and B. Kasemo, Combust. Flame, 111, 312 (1997).   DOI   ScienceOn
3 C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, A. Inauen, B. Kaeppeli, B. Hemmerling, and A. Stampanoni, Combust. Flame, 128, 340 (2002).   DOI   ScienceOn
4 E.-A. Reinecke, I. M. Tragsdorf, and K. Gierling, Nucl. Eng. Des., 230, 49 (2004).   DOI   ScienceOn
5 E. Bachellerie, F. Arnould, M. Auglaire, B. de Boeck, O. Braillard, B. Eckardt, F. Ferroni, and R. Moffett, Nucl. Eng. Des., 221, 151 (2003).   DOI   ScienceOn
6 P. Royl, H. Rochholz, W. Breitung, J. R. Travis, and G. Necker, Nucl. Eng. Des., 202, 231 (2000).   DOI   ScienceOn
7 H. Chon and G. Seo, An Introduction to Catalyst, 6, 254, Hanrimwon, Seoul (2002).
8 S. K. Jo, J. K. Jin, and S. J. Kwon, Catal. Today, 155, 45 (2010).   DOI   ScienceOn
9 F. Fineschi, M. Bazzichi, and M. Carcassi, Nucl. Eng. Des., 166, 481 (1996).   DOI   ScienceOn
10 J. W. Park and Ph. D. Dissertation, Seoul National University, Seoul, Korea (2011).
11 S. S. Kim, H. J. Choi, and S. C. Hong, Appl. Chem. Eng., 21, 18 (2010).
12 N. E. Fernandes, Y. K. Park, and D. G. Vlachos, Combust. Flame, 118, 164 (1999).   DOI   ScienceOn
13 J. T. Richardson, Principles of Catalyst Development, 2, 28, Springer, New York (1989).