Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.3.266

The Effect of Surface Modification on the Disperisibilities and the Thermal Conductivities of Single-Walled Carbon Nanotube (SWCNT)/Epoxy Composites  

Kim, Jiwon (Department of Chemical Engineering, Chungang University)
Im, Hyungu (Department of Chemical Engineering, Chungang University)
Kim, Jooheon (Department of Chemical Engineering, Chungang University)
Publication Information
Applied Chemistry for Engineering / v.22, no.3, 2011 , pp. 266-271 More about this Journal
Abstract
Single-walled carbon nanotube (SWCNT)/Epoxy composites were prepared for improving thermal conductivities and dispersion of SWCNTs in the epoxy matrix. Composites obtained different types of SWCNTs which are pristine and functionalized of the SWCNTs by acid and amine treatments. Three types of SWCNTs were dispersed in diglycidyl ether of bisphenol A (DGEBA) and bisphenol F (DGEBF). Enhanced interaction between functional groups on SWCNT and epoxy resins was evidenced by an improvement in the dispersion of the SWCNTs in the epoxy matrix. Thermal conductivity of composites containing acid SWCNTs were found to be much better than those containing pristine and amine treated SWCNTs.
Keywords
epoxy resin; SWCNT; dispersity; thermal conductivity;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 R. S. Bauer, Epoxy Resins Chemistry, American Chemical Society, Washington D.C. (1979).
2 C. A. May, Epoxy Resins, Marcel Pekker, New York (1988).
3 H. Lee and N. Kris, Handbook of Epoxy Resins, McGraw-Hill, New York (1982).
4 L. Matejka, O. Dukh, and J. Kolarik, Polymer, 41, 1449 (2000).   DOI   ScienceOn
5 K. H. Haas and H. Wolter, Curr. Opin. Solid St. M., 4, 571 (1999).   DOI   ScienceOn
6 N. Salahuddin, A. Moet, A. Hiltner, and E. Baer, Eur. Polym. J., 38, 1477 (2002).   DOI   ScienceOn
7 L. Matejka, K. Dusek, J. Plestil, J. Kriz, and F. Lednicky, Polymer, 40, 171 (1998).
8 B. K. Min, Polymer (Korea), 12, 599 (1988).
9 L. Matejka, O. Dukh, and J. Kolarik, Polymer, 41, 1449 (2000).   DOI   ScienceOn
10 K. H. Haas and H. Wolter, Curr. Opin. Solid St. M., 4, 571 (1999).   DOI   ScienceOn
11 I. N. Jan, T. M. Lee, K. C. Chiou, and J. J. Lin, Ind. End. Chem. Res., 44, 2086 (2005).   DOI   ScienceOn
12 P. Richard, T. Prasse, J. Y. Cavaille, L. Chazeau, C. Gauthier, and J. Duchet, Mat. Sci. Eng. A., 352, 344 (2003).   DOI   ScienceOn
13 Y. L. Liu, C. Y. Hsu, W. L. Wei, and R. J. Jeng, Polymer, 44, 5159 (2003).   DOI   ScienceOn
14 J. T. Dickinson, K. H. Nwe, W. P. Hess, and S. C. Langford, Appl. Surf. Sci., 208, 2 (2003).
15 E. Hamme, X. Tang, M. Trampert, T. Schmitt, K. Mauthner, A. Eder, and P. Potschke, Carbon, 42, 1153 (2004).   DOI   ScienceOn
16 W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, and Q. Xin, Carbon, 40, 791 (2002).   DOI   ScienceOn
17 M Guo, J. Chen, J. Li, B. Tao, and S. Yao, Analytica Chimica Acta, 532, 71 (2005).   DOI   ScienceOn
18 T.-E. Chang, A. Kisliuk, S. M. Rhodes, W. J. Brittain, and A. P. Sokolov, Polymer, 47, 7740 (2006).   DOI   ScienceOn
19 B. Philip, J. K. Abraham, A. Chandrasekhar, and V. K. Varadan, Smart Mater. Struct., 12, 1603 (2005).
20 J. Xiong, Z. Zheng, X. Qin, M. Li, H. Li, and X. Wang, Carbon, 44, 2701 (2006).   DOI   ScienceOn
21 Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. C. Chung, and H. G. Yoon, Carbon, 43, 23 (2005).   DOI   ScienceOn
22 D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates, J. Liu, and R. E. Smalley, J. Am. Chem. Soc., 122, 2383 (2002).
23 A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, Comp. Sci. Technol., 62, 1993 (2002).   DOI   ScienceOn
24 J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, Polymer, 44, 5893 (2003).   DOI   ScienceOn
25 S. E. baker, W. Cai, T. L. Lasseter, K. P. Weidkamp, and R. J. Hamers, Nano Lett., 2, 1413, (2002).   DOI   ScienceOn
26 H. Ago, T. Kugler, F. Cacialli, W. R. Salaneck, M. S. P. Shaffer, A. H. Windle, and R. H. Friend, J. Phys. Chem. B, 103, 8116 (1999).   DOI   ScienceOn
27 J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, Eden Prairie, MN (1992).
28 J. Zhu, J. D. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku, and E. V. Barrera, Nano Lett., 3, 1107 (2003).   DOI   ScienceOn
29 B. Ni, T. Watanabel, and S. R. Phillpot, J. Phys. Condens. Matter, 21, 084219 (2009).   DOI   ScienceOn
30 A. Moisala, Q. Li, I. A. Kinloch, and A. H. Windle, Compos. Sci. Tech., 66, 1285 (2006).   DOI   ScienceOn
31 S. Wang, R. Liang, B. Wang, and C. Zhang, Carbon, 47, 53 (2009).   DOI   ScienceOn
32 A. Yu, M. E. Itkis, E. Bekyarova, and R. C. Haddon, J. Appl. Phys. Lett., 89, 133102 (2006).   DOI   ScienceOn
33 F. H. Gojoy, M. H. G. Wichmann, B. Fiedler, I. A. Kinloch, W. Bauhofer, A. H. Windle, and K. Schute, Polymer, 47, 2036, (2006).   DOI   ScienceOn
34 M. Pietralla, J. Comput. Aid. Des., 3, 273, (1996).   DOI   ScienceOn