Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.1.021

Methylene Blue Photodegradation Properties of Anatase/brookite Hybrid TiO2 Photocatalyst Prepared with Different Acid Catalysts  

Yun, Seok-Min (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Kim, Jinhoon (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Jeong, Euigyung (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Im, Ji Sun (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Lee, Young-Seak (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.22, no.1, 2011 , pp. 21-25 More about this Journal
Abstract
In this study, anatase/brookite hybrid $TiO_2$ was prepared using different acid catalysts and microwave to improve photodegradation of organic pollutants. The methylene blue photodegradation properties of the prepared photocatalysts with different particle/crystal size and brookite fractions were investigated. Surface characteristics and particle sizes of anatase/brookite hybrid $TiO_2$ were evaluated using scanning electron microscopy (SEM) and laser diffraction particle size analyzer, respectively and crystal structures were investigated with X-ray diffraction (XRD). Methylene blue photodegradation properties were evaluated with UV-vis spectrophotometer. Anatase and anatase/brookite hybrid $TiO_2$ had less than 500 nm size of clusters and the average particle size of $6.66{\sim}6.85{\mu}m$, suggesting that types of acid catalysts did not affect the size. XRD of the prepared $TiO_2$ showed that the photocatalysts had anatase/brookite hybrid crystal structure and applying microwave did not change their crystal structure. Photodegradation of methylene blue with the prepared photocatalyst did not increased proportionally to the fraction of brookite and the crystal size and decreased when brookite fraction and the crystal size increased further. Anatase/brookite hybrid $TiO_2$ with brookite fraction of 9.4% and crystal size of 4.53 nm shows the best photodegradation activity of methylene blue.
Keywords
titanium tetra isopropoxide; $TiO_2$; microwave; brookite; methylene blue;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 K. Aghish and D. C. Panagiotis, Aerosol Sci. Technol., 32, 369 (2000).   DOI   ScienceOn
2 K. H. Choi, B. J. Ahn, W. G. Chang, H. S. Shin, and O. B. Yang, J. Korean Ind. Eng. Chem., 14, 937 (2003).
3 K. Hashimoto, H. Irie, and A. Fujishima, J. Appl. Phys., 44, 8269 (2005).   DOI
4 S. Tanemura, L. Miao, W. Wunderlich, M. Tanemura, Y. Mori, S. Toh, and K. Kaneko, Sci. Tech. Adv. Mater., 6, 11 (2005).   DOI   ScienceOn
5 D. H. Hyun, T. H. Lim, and S. W. Lee, J. Korean Ind. Eng. Chem., 19, 554 (2008).
6 B. C. Bai, J. S. Im, J. G. Kim, and Y. S. Lee, Appl. Chem. Eng., 21, 29 (2010).
7 T. Mishra, J. Hait, N. Aman, M. Gunjan, B. Mahato, and R. K. Jana, J. Colloid Interface Sci., 327, 377 (2008).   DOI   ScienceOn
8 S. M. Yun, K. Palanivelu, Y. H. Kim, P. H. Kang, and Y. S. Lee, J. Ind. Eng. Chem., 14, 667 (2008).   DOI   ScienceOn
9 S. H. Song and M. Kang, J. Ind. Eng. Chem., 14, 785 (2008).   DOI   ScienceOn
10 Q. Cgen, Y. Qian, Z. Chen, G. Zhou, and Y. Zhang, Mat. Lett., 22, 77 (1995).   DOI   ScienceOn
11 W. Y. Jung, Y. H. Han, G. D. Lee, S. S. Park, and S. S. Hong, J. Korean Ind. Eng. Chem., 19, 351 (2008)
12 D. W. Johnson, J. Am. Ceram. Soc. Bull., 64, 1597 (1985).
13 X. Z. Ding, Z. Z. Qi, and Y. Z. He, J. Mat. Sci. Lett., 14, 21 (1995).   DOI   ScienceOn
14 H. D. Nam, B. H. Lee, S. J. Kim, C. H. Jung, J. H. Lee, and S. Park, J. Appl. Phys., 37, 4603 (1998).   DOI
15 S. K. Ellis and E. P. M. Namara, J. Am. Ceram. Soc. Bull., 68, 988 (1989).
16 B. Jiang, H. Yin, T. Jiang, J. Yan, Z. Fan, C. Li, J. Wu, and Y. Wada, Mater. Chem. Phys., 92, 595 (2005).   DOI   ScienceOn
17 F. Armani, M. Gougis, S. A. Impey, A. C. James, K. Lawson, L. Lihrmann, M. Stock, and S. Dunn, Mater. Lett., 64, 140 (2010).   DOI   ScienceOn
18 S. W. Sarah, B. Donia, A. S. Jason, and A. Rose, Chem. Eng., 95, 213 (2003).   DOI   ScienceOn
19 C. B. Almquist and P. Biswas, J. Catal., 212, 145 (2002).   DOI   ScienceOn
20 K. Wilasinee, P. Piyasan, P. Joongjai, S. Akawat, S. Piyawat, and S. Chairit, J. Cryst. Growth, 297, 234 (2006).   DOI   ScienceOn
21 B. M. Lee, D. Y. Shin, and S. M. Han, J. Kor. Ceram. Soc., 37, 308 (2000).
22 L. Mao, Q. Li, H. Dang, and Z. Zhang, Mat. Res. Bull., 40, 201 (2005).   DOI   ScienceOn
23 K. N. P. Kumar, D. J. Fray, J. Nair, F. Mizukami, and T. Okubo, Scripta Mater., 57, 771 (2007).   DOI   ScienceOn
24 A. Porrier, C. Chaneac, E. Tronc, L. Mazerolles, and J. P. Jolivet, J. Mater. Chem., 11, 1116 (2001).   DOI   ScienceOn
25 B. I. Lee, A. Wang, R. C. Bhave, and M. Hu, Mater. Lett., 60, 1179 (2006)   DOI   ScienceOn
26 J. Yu, J. C. Yu, M. K. P. Leung, W. Ho, B. Cheng, X. Zhao, and J. Zhao, J. Catal., 217, 69 (2003).
27 K. N. P. Kumar, D. J. Fray, J. Nair, F. Mizukami, and T. Okubo, Scripta Mater., 57, 771 (2007).   DOI   ScienceOn