Browse > Article

The Effects of Size Reduction and pH on Dispersion Characteristics of ATO (Antimony-Doped Tin Oxide)  

Kim, Jin-Hoon (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Jeong, Eui-Gyung (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Lee, Sang-Hun (Microglobe Corporation)
Han, Won-Hee (Microglobe Corporation)
Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.21, no.3, 2010 , pp. 311-316 More about this Journal
Abstract
This study aimed to prepare antimony-doped tin oxide (ATO) dispersion with high stability. The methods to achieve this goal were sought by investigating the changes of ATO particle size, size distribution, dispersion property as wet ball milling treatment time increased. And the changes of wet ball milled ATO dispersion property were also investigated, as pH increased. The changes of ATO particle size and size distribution, according to wet ball milling treatment time were evaluated with laser diffraction particle size analyzer and scanning electron microscope (SEM). The changes of ATO dispersion property, as wet ball milling treatment time and pH increased, were evaluated with zeta potential analysis and Turbiscan. By 60 min wet ball milling treatment time, ATO particle size decreased and size distribution became narrower, as the treatment time increased. After 60 min milling, the ATO particle size decreased to less than 30% of the initial size and the size distribution was narrowed to $0.1{\sim}5{\mu}m$ from $1{\sim}35{\mu}m$. However, more than 60 min milling, ATO particles aggregated and the particle size increased. ATO dispersion stability also increased as the treatment time and pH increased because the reduced particle size increased particle surface energy and repulsion between particles and the increased pH enhanced particle surface ionization. Hence, after proper length of wet ball milling treatment, highly stable ATO dispersion can be prepared, as increasing pH of the dispersion.
Keywords
antimony-doped tin oxide; wet-ball-milling; dispersion; zeta potential;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 M. Narkis, G. Lidor, A. Vaxman, and L. Zuri, J. Electrost., 47, 201 (1999).   DOI   ScienceOn
2 J. Texter and M. Lelental, Langmuir, 15, 654 (1999).   DOI   ScienceOn
3 C. Celia, E. Trapasso, D. Cosco, D. Paolino, and M. Fresta, Colloid Surface., 72, 155 (2009).   DOI   ScienceOn
4 ASTM Standard D 4187-82, Zeta potential of colloids in water and waste water, American Society for Testing and Materials (1985).
5 E. J. Bae, J. J. Lee, Y. H. Kim, K. H. Choi, and J. H. Yi, J. Kor. Soc. Environ. Anal., 12, 59 (2009).
6 X. C. Chen, J. Sol-Gel Sci. Technol., 34, 268 (2005).
7 F. Strubbe, F. Beunis, and K. Neyts, J. Colloid Interf. Sci., 301, 306 (2006).
8 P. Gregory, High-Technology Applications of Organic Colorants, Plenum Press, 759, New York (1991).
9 K. Y. Cho, J. H. Yim, J. K. Park, and K. S. Lee, Kor. Polym. J., 32, 246 (2008).
10 O. Mengual, G. Meunier, I. Cayre, K. Puech, and P. Snabre, Talanta, 50, 445 (1999).   DOI   ScienceOn
11 H. K. Choi and W. S. Choi, Kor. J. Chem. Eng., 40, 498 (2002).
12 J. S. Kim, T. S. Byun, J. N. Kim, and J. Choi, Theor. Appl. Chem. Eng., 8, 5110 (2002).
13 J. H. Park, J. Kim, S. H. Cho, K. H. Han, C. K. Yi, and G. T. Jin, J. Chem. Eng., 16, 659 (1999).
14 Y. S. Lee and J. M. Lee, J. Kor. Soc. Indust. Appl., 10, 263 (2007).
15 M. S. Kim, E. H. Min, and J. G. Koh, J. Kor. Magn. Soc., 18, 120 (2008).   과학기술학회마을   DOI   ScienceOn
16 J. Sun, W. W. Gerberich and F. Francis, J. Polym. Sci., B41, 1744 (2003).
17 K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films, 102, 1 (1983).   DOI   ScienceOn
18 C. N. Ma, Y. L. Chang, W. C. Ye, L. Y. Duan, and C. M. Wang, J. Supercrit. Fluid., 45, 112 (2008).   DOI   ScienceOn
19 L. P. Ning, L. Q. Jian, S. R. Yang, J. Q. Wang, J. F. Ren, and J. M. Wang, Tribol. Int., 43, 568 (2010).   DOI   ScienceOn
20 J. Paasi, S. Nurmi, R. Vuorinen, S. Strengell, and P. Maijala, J. Electrost., 51, 429 (2001).   DOI   ScienceOn
21 Y. H. Zheng, Z. A. Shen, C. J. Cai, S. L. Ma, and Y. H. Xing, J. Hazard. Mater., 163, 600 (2009).   DOI   ScienceOn
22 Y. H. Kim, Y. S. Kim, and J. B. Gi, J. Ind. Eng. Chem., 10, 739 (2004).
23 W. C. Song, J. KIEEME, 17, 1277 (2004).   과학기술학회마을