Browse > Article

Study of $CO_2$ Absorption Characteristics in Aqueous K_2CO_3$ Solution with Homopiperazine  

Kim, Young-Eun (Greenhouse Gas Research Center, Korea Institute of Energy Research)
Nam, Sung-Chan (Greenhouse Gas Research Center, Korea Institute of Energy Research)
Lee, Young-Taek (Department of Bio-Applied Chemistry, Chungnam National University)
Yoon, Yeo-Il (Greenhouse Gas Research Center, Korea Institute of Energy Research)
Publication Information
Applied Chemistry for Engineering / v.21, no.3, 2010 , pp. 284-290 More about this Journal
Abstract
In this study, as one of the carbon dioxide ($CO_2$) adsorbents the aqueous potassium carbonate ($K_2CO_3$)/promoter mixtures were investigated. Equilibrium partial pressure ($P_{CO_2}^*$) and pressure change were measured by using VLE (Vapor-liquid equilibrium) equipment in the mixture solution at 60 and $80^{\circ}C$, respectively. Absorption capacity was estimated in the semi-batch absorption apparatus at 40, 60 and $80^{\circ}C$. We proposed to use homopiperazine (homoPZ), cyclic diamine compound as a promoter of $K_2CO_3$ solution, to prevent crystalline formation and increase absorption capacity of aqueous $K_2CO_3$ solution. The absorption capacity of $K_2CO_3$/homoPZ was compared with MEA, $K_2CO_3$ and $K_2CO_3$/piperazine (PZ). Based on the results, we found that the mixture solution containing homoPZ had lower equilibrium partial pressure than that of $K_2CO_3$ solution and the absorption rate was approximately 0.375-times faster at $60^{\circ}C$, 0.343-times faster at $80^{\circ}C$ than that of aqueous $K_2CO_3$ solution without homoPZ. $K_2CO_3$/homoPZ solution showed excellent CO2 loading capacity compared with MEA solution at $60^{\circ}C$.
Keywords
potassium carbonate; piperazine; homopiperazine; $CO_2$ absorption;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 H. Bosch, G. F. Versteeg, and Van W. P. M. Swaaij, Chem. Eng. Sci., 44, 2735 (1989).   DOI   ScienceOn
2 UNFCCC Report for Greenhouse Gases Emission Statistics, Korea Energy Economics Institute (2001).
3 J. T. Cullinane, Ph.D. Dissertation, The University of Texas at Austin, Austin, TX (2005).
4 G. Astarita, D. W. Savage, and J. M. Longo, Chem. Eng. Sci., 36, 581 (1981).   DOI   ScienceOn
5 W. J. Jang, Y. I. Yoon, S. D. Park, Y. W. Rhee, and I. H. Baek, J. Korean Ind. Eng. Chem., 19, 645 (2008).
6 J. S. Tosh, J. H. Field, H. E. Benson, and W. P. Haynes, U. S. Bureau of Mines Report of Investigation, 5484, 23 (1959).
7 D. W. Savage and G. Sartori, Faraday Discuss. Chem. Soc., 77, 17 (1984).   DOI
8 P. C. Tseng, W. S. Ho, and D. W. Savage, AIChE. J., 34, 922 (1988).   DOI   ScienceOn
9 J. T. Cullinane and G. T. Rochelle, Chem. Eng. Sci., 59, 3619 (2004).   DOI   ScienceOn
10 G. W. Xu, C. F. Zhang, S. J. Qin, and Y. W. Wang, Ind. Eng. Chem. Res., 31, 921 (1992).   DOI
11 H. E. Benson, J. H. Field, and R. M. Jimeson, Chem. Eng. Prog., 50, 356 (1954).
12 H. E. Benson, J. H. Field, and W. P. Haynes, Chem. Eng. Prog., 52, 433 (1956).
13 G. S. Goff, Ph.D. Dissertarion, The University of Texas at Austin, Austin, TX (2005).
14 D. J. Seo, Ph.D. Dissertation, Korea Institute of Science and Technology, Korea (2000).
15 G. Astarita, Chem. Eng. Sci., 16, 202 (1961).   DOI   ScienceOn
16 G. Astarita, D. W. Savage, and A. Bisio, John Wiley & Sons, New York (1983).
17 A. O. Alawode, Ph.M. Dissertation, The University of Texas at Austin, Austin, TX (2005).
18 M. Apple, U. Wagner, H. J. Henrici, K. Voldamer, and E. Fuerst, U. S. Patent 4,336,233 (1982).
19 S. Charkvarti, A. Gupta, and B. Hunek, First National Conference on Carbon Sequestration, Washington, DC, May 15-17 (2001).