Browse > Article

Biological Removal of Nitrogen Oxides from Combustion Flue Gases  

Lee, Ki-Say (Department of Environmental Engineering and Biotechnology, Myongji University)
Publication Information
Applied Chemistry for Engineering / v.21, no.3, 2010 , pp. 243-251 More about this Journal
Abstract
Nitrogen oxides (NOx) in combustion flue gas are currently mitigated by chemical processes such as catalytic reduction, absorption and adsorption. However, development of environmentally sustainable biological processes is necessary in the near future. In this paper, the up-to-dated R&D trend of biological methodologies regarding NOx removal was reviewed, and their advantages and disadvantages were discussed. The principles and applications of bacterial system including nitrification and denitrification and photosynthetic microalgae system were compared. In order to enhance biological treatment rate and performance, the insoluble nitric oxide (NO) should be first absorbed using a proper solubilization agent, and then microbial degradation or fixation is to be followed. The use of microalgal system has a good prospect because it can fix $CO_2$ and NOx simultaneously and requires no additional carbon for energy source.
Keywords
flue gas; nitrogen oxides; nitric oxide; biological removal; microalgae; Fe(II)EDTA;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 K. I. Yoshihara, H. Nagase, K. Eguchi, K. Hirata, and K. Miyamoto, J. Ferment. Bioeng., 82, 351 (1996).   DOI   ScienceOn
2 H. Nagase, K. Eguchi, K. Yoshihara, K. Hirata, and K. Miyamoto, J. Ferment. Bioeng., 86, 421 (1998).   DOI   ScienceOn
3 J. Hofele, D. van Velzen, H. Langenkamp, and K. Schaber, Chem. Eng. Proc., 35, 295 (1996).   DOI   ScienceOn
4 G. H. Jing, W. Li, Y. Shi, B. Y. Ma, and T. E. Tan, J. Zhejiang Univ. Sci., 5, 432 (2004).   DOI   ScienceOn
5 C. B. Wang, T. F. Yeh, and H. K. Lin, J. Hazard. Mater., 92, 241 (2002).   DOI   ScienceOn
6 B. N. Dasu, V. Deshmane, R. Shanmugasundram, C. M. Lee, and K. L. Sublette, Fuel, 72, 1705 (1993).   DOI   ScienceOn
7 K. N. Min, S. J. Ergas, and J. M. Harrison, Environ. Eng. Sci., 19, 575 (2002).   DOI   ScienceOn
8 W. T. Potter, U. Le, S. Ronda, J. G. Cho, R. Shanmugasundram, A. Chirkis, and K. L. Sublette, Appl. Biochem. Biotechnol., 51, 771 (1995).   DOI   ScienceOn
9 B. D. Lee, W. A. Apel, and W. A. Smith, Environ. Prog., 20, 157 (2001).   DOI   ScienceOn
10 H. Bosch and F. Janssen, Catal. Today, 2, 369 (1988).   DOI   ScienceOn
11 W. T. Potter, J. Cho, and K. L. Sublette, Fuel Process. Technol., 40, 355 (1994).   DOI   ScienceOn
12 R. W. Ye, B. A. Averill, and J. M. Tiedje, Appl. Environ. Microbiol., 60, 1053 (1994).
13 N. J. Kim, M. Hirai, and M. Shoda, J. Hazard. Mater., 72, 77 (2000).   DOI   ScienceOn
14 W. G. Zumft, Microbiol. Mol. Biol. Rev., 61, 533 (1997).
15 J. R. Woertz, K. A. Kinney, and P. J. Szaniszlo, J. Air Waste Manage. Assoc., 51, 895 (2001).   DOI   ScienceOn
16 K. Okuno, M. Hirai, M. Sugiyama, K. Haruta, and M. Shoda, Biotechnol. Lett., 22, 77 (2000).   DOI   ScienceOn
17 T. Lukow and H. Diekmann, Biotechnol. Lett., 19, 1157 (1997).   DOI   ScienceOn
18 M. Yani, M. Hirai, and M. Shoda, Environ. Technol., 21, 1199 (2000).   DOI   ScienceOn
19 V. Zang, M. Kotowski, and R. van Eldik, Inorg. Chem., 27, 3279 (1988).   DOI
20 B. R. Deshwal, D. S. Jin, S. H. Lee, S. H. Moon, J. H. Jung, and H. K. Lee, J. Hazard. Mat., 150, 649 (2008).   DOI   ScienceOn
21 Y. Hishinuma, R. Kaji, H. Akimoto, F. Katajima, T. Mori, T. Kamo, Y. Arikawa, and S. Nozawa, Bul. Chem. Soc. Jap., 52, 2863 (1979).   DOI
22 V. Zang, M. Kotowski, and R. van Eldik, Inorg. Chem., 29, 1705 (1990).   DOI
23 H. Chu, T. W. Chien, and B. W. Twu, J. Hazard. Mater., 84, 241 (2001).   DOI   ScienceOn
24 E. Tzimas, A. Mercier, C. C. Cormos, and S. D. Peteves, Energy Pol., 35, 3991 (2007).   DOI   ScienceOn
25 B. B. Sundaresan, C. I. Harding, F. P. May, and E. R. Hendrickson, Environ. Sci. Technol., 1, 151 (1967).   DOI   ScienceOn
26 B. Ramachandran, R. G. Herman, S. Choi, H. G. Stenger, C. E. Lyman, and J. W. Sale, Catal. Today, 55, 281 (2000).   DOI   ScienceOn
27 I. Kalkowski and R. Conrad, FEMS Microbiol. Lett., 82, 107 (1991).   DOI   ScienceOn
28 R. Shanmugasundram, C. M. Lee, and K. L. Sublette, Appl. Biochem. Biotechnol., 39, 727 (1993).   DOI   ScienceOn
29 M. Konneke, A. E. Bernhard, J. R. de la Torre, C. B. Walker, J. B. Waterbury, and D. A. Stahl, Nature, 437, 543 (2005).   DOI   ScienceOn
30 C. A. Francis, J. M. Beman, and M. M. M. Kuypers, ISME J., 1, 19 (2007).   DOI   ScienceOn
31 M. H. Thiemens, H. Mark, and W. C. Trogler, Science, 251, 932 (1991).   DOI   ScienceOn
32 Z. Guo, Y. Xie, I. Hong, and J. Kim, Energy Conv. Manag., 42, 2005 (2001).   DOI   ScienceOn
33 J. F. Demmink, I. C. F. van Gils, and A. A. C. M. Beenackers, Ind. Eng. Chem. Res., 36, 4914 (1997).   DOI   ScienceOn
34 M. S. Chou and J. H. Lin, J. Air Waste Manage. Assoc., 50, 502 (2000).   DOI   ScienceOn
35 C. Kroeze, Sci. Total Environ., 143, 193 (1994).   DOI   ScienceOn
36 A. Shimizu, K. Tanaka, and M. Fujimori, Chemosphere GCS, 2, 425 (2000).
37 Y. Jin, M. C. Veiga, and C. Kennes, J. Chem. Tech. Biotechnol., 80, 483 (2005).   DOI   ScienceOn
38 M. Bradford, R. Grover, and P. Paul, Chem. Eng. Prog., 98, 42 (2002).
39 M. Bradford, R. Grover, and P. Paul, Chem. Eng. Prog., 98, 38 (2002).
40 J. O. L. Wendt, W. P. Linak, and P. W. Srivastava, AIChE J., 47, 2603 (2001).   DOI   ScienceOn
41 H. B. Lockhart and R. V. Blakeley, Environ. Sci. Technol., 9, 1035 (1975).   DOI   ScienceOn
42 N. W. Cani and I. O. Y. Lin, Catal. Today, 63, 133 (2000).   DOI   ScienceOn
43 A. Fritz and V. Pitchon, Appl. Cat., B13, 1 (1997).
44 T. Kurvits and T. Marta, Environ. Pollut., 102, 187 (1998).   DOI   ScienceOn
45 NIER, National Air Pollutants Emission 2007, 11-1480523-000198- 10, Ministry of Environment, Korea (2009).
46 S. Metsarinne, P. Rantanen, R. Aksela, and T. Tuhkanen, Chemosphere, 55, 379 (2004).   DOI   ScienceOn
47 K. Lee, 41th KSIEC Meeting, 1LE-3, Busan, Korea (2010).
48 P. van der Maas, P. van den Bosch, B. Klapwijk, and P. Lens, Biotechnol. Bioeng., 90, 433 (2005).   DOI   ScienceOn
49 P. van der Maas, P. van den Brink, S. Utomo, B. Klapwijk, and P. Lens, Biotechnol. Bioeng., 94, 576 (2006).
50 D. E. O. Santiago, MS Thesis, Myongji University, Yongin, Korea (2010).
51 B. Cetinkaya, R. K. Sahlin, W. R. Abma, H. Dijkman, S. F. Meyer, and S. M. Kampeter, Hydrocarb. Proc., 79, 55 (2000).
52 R. Kumaraswamy, G. Muyzer, J. G. Kuenen, and M. C. M. van Loosdrecht, Water Sci. Technol., 50, 9 (2004).
53 P. van der Maas, T. van de Sandt, B. Klapwijk, and P. Lens, Biotechnol. Prog., 19, 1323 (2003).
54 P. van der Maas, L. Harmsen, S. Weelink, B. Klapwijk, and P. Lens, J. Chem. Tech. Biotechnol., 79, 835 (2004).   DOI   ScienceOn
55 H. Nagase, K. Yoshihara, K. Eguchi, Y. Okamoto, S. Murasaki, R. Yamashita, K. Hirata, and K. Miyamoto, Biochem. Eng. J., 7, 241 (2001).   DOI   ScienceOn
56 R. Kumaraswamy, U. van Dongen, J. G. Kuenen, W. Abma, M. C. M. van Loosdrecht, and G. Muyzer, Appl. Environ. Microbiol., 71, 6345 (2005).   DOI   ScienceOn
57 H. F. Jin, D. Santiago, J. Park, and K. Lee, Biotechnol. Bioprocess Eng., 13, 48 (2008).   DOI   ScienceOn
58 D. Santiago, H. F. Jin, and K. Lee, Process Biochem., doi:10.1016/j.procbio. 2010. 04. 003 (2010).
59 Y. Shi, D. Littlejohn, and S. G. Chang, Environ. Sci. Technol., 30, 3371 (1996).   DOI   ScienceOn
60 Y. Shi, H. Wang, and S. G. Chang, Environ. Prog., 16, 201 (1997).
61 W. P. Flanagan, W. A. Apel, J. M. Barnes, and B. D. Lee, Fuel, 81, 1953 (2002).   DOI   ScienceOn
62 J. Doucha, F. Straka, and K. Livansky, J. Appl. Phycol., 17, 403 (2005).   DOI   ScienceOn
63 S. Hossain, A. Salleh, A. N. Boyce, P. Chowdhury, and M. Naqiuddin, Am. J. Biochem. Biotechnol., 4, 250 (2008).   DOI
64 M. Negoro, N. Shioji, K. Mitamoto, and Y. Miura, Appl. Biochem. Biotechnol., 28, 877 (1991).   DOI   ScienceOn
65 H. Nagase, K. Yoshihara, K. Eguchi, Y. Yokota, R. Matsui, K. Hirata, and K. Miyamoto, J. Ferment. Bioeng., 83, 461 (1997).   DOI   ScienceOn
66 K. Miyamoto, H. Nagase, and K. Hirata, Photosynthetic Microorganisms in Environmental Biotechnology, ed. H. Kojima and Y. K. Lee, 87, Springer-Verlag (2001).
67 J. S. Lee, D. K. Kim, J. P. Lee, S. H. Park, J. H. Koh, and S. J. Ohh, J. Microbiol. Biotechnol., 11, 772 (2001).
68 Y. Chisti, TIB, 26, 126 (2007).
69 J. H. Lee, J. S. Lee, C. S. Shin, S. C. Park, and S. W. Kim, J. Microbiol. Biotechnol., 10, 338 (2000).
70 H. Matsumoto, A. Hamasaki, N. Sioji, and Y. Ikuta, J. Chem. Eng. Jap., 30, 620 (1997).   DOI   ScienceOn
71 K. H. Lee and K. L. Sublette, Appl. Biochem. Biotechnol., 28, 623 (1991).   DOI   ScienceOn
72 P. Arvidsson, K. Nilsson, H. Hakanson, and B. Mattiasson, Appl. Microbiol. Biotechnol., 49, 677 (1998).   DOI   ScienceOn
73 K. T. Klasson and B. H. Davison, Appl. Biochem. Biotechnol., 91, 205 (2001).   DOI   ScienceOn
74 K. H. Lee and K. L. Sublette, Appl. Biochem. Biotechnol., 24, 441 (1990).   DOI