Browse > Article

Decomposition Studies of DFP Using Transition Metal Catalysts  

Kye, Young-Sik (Department of Chemistry, Korea Military Academy)
Jeong, Keunhong (Department of Chemistry, Korea Military Academy)
Chung, Woo Young (Department of Chemistry, Korea Military Academy)
Publication Information
Applied Chemistry for Engineering / v.21, no.1, 2010 , pp. 1-5 More about this Journal
Abstract
Cu(II)-organic complexes were synthesized with Lewis base organic ligands including diamine, aminothiol, and dithiol to determine the reactivity for DFP hydrolysis. Results show that the aminothiol catalyst enhances the hydrolysis of DFP in three folds compared to diamine type because aminothiol has higher basicity than diamine. Due to low solubility of Cu(II)(1,2-ethane dithiol)$(NO_3)_2$, it is impossible to compare directly the rates in homogeneous condition. However, the rate of dithol complex is even 1.6 times faster than that of the diamine type. The reactivity of zeolite for DFP hydrolysis is also evaluated. NaY type does not promote the hydrolysis, but RuNaY shows relatively lower reactivity than those of Cu(II)-organic ligands complexes.
Keywords
DFP; nerve agent; Cu(II) chelate; RuNaY zeolite;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 R. A. Moss, S. Chatterjee, and B. Wilk, J. Org. Chem., 51, 4303 (1986)   DOI
2 R. A. Moss, K. W Alwis, and J. S. Shin, J. Am. Chem. Soc., 106, 2651(1984)   DOI
3 P. Hendry and A. M. Sargeson, Aust. J. Chem., 39, 1177 (1986)   DOI
4 G. W. Wagner, L. R. Procell, and S. Munavalli, J. Phys. Chem. C, 111, 17564 (2007)   DOI   ScienceOn
5 G. W. Wagner, Q. Chen, and Y. Wu, J. Phys. Chem. C, 112, 11901 (2008)   DOI   ScienceOn
6 G. W. Wagner and P. W. Bartram, Langmuir, 15, 8113 (1999)   DOI   ScienceOn
7 I. W. Yang and W. Y. Chung, J. Ind. Eng. Chem., 6, 242 (2000)
8 R. K. Osterheld, Topics in phosphorus chemistry, vol. 7, John- Wiley & Sons, New York, pp.234~237 (1964)
9 J. E. Coleman and P. Gettins, Adv. Enzymol., 55, 381 (1983)
10 F. M. Menger, L. H. Gan, E. Johnson, and D. H. Durst, J. Am. Chem. Soc., 109, 2800 (1987)   DOI
11 R. A. Moss, K. W. Alwis, and G. O. Bizzigotti, J. Am. Chem. Soc., 105, 681 (1983)   DOI
12 R. C. Courtney, R. L. Gustafson, S. J. Westerback, H. Hyytianinen, S. C. Chaberek, Jr., and A. E. Martell, J. Am. Chem. Soc., 79, 3030 (1957)   DOI
13 I. W. Yang, W. Y. Chung, and K. B. Choo, J. Kor. Mil. Academy, 53, 703 (1997)
14 P. Hendry and A. M. Sargeson, Inorg. Chem., 29, 92 (1990)   DOI
15 G. W. Wagner, L. R. Procell, R. J. O’Connor, S. Munavalli, C. L. Carnes, P. N. Kapoor, and K. J. Klabunde, J. Am. Chem. Soc., 123, 1636 (2001)   DOI   ScienceOn
16 J. Epstein and D. Hrosenblatt, J. Am. Chem. Soc., 80, 3596 (1958)   DOI
17 J. R. Morrow and W. C. Trogler, Inorg. Chem., 27, 3387 (1988)   DOI
18 M. V. Twigg, Mechanisms of inorganic and organometallic reactions, Pelum Press, New York, pp. 228∼234 (1984)
19 A. E. Martell, S. Chaberek, Jr., R. C. Courtney, S. Westerback, and H. Hyytiainen, J. Am. Chem. Soc., 79, 3036 (1957)   DOI
20 F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Interscience, New York, 1972, p. 1011