Browse > Article

Study on the Electrical Conductivity in Polysiloxane/Metal Composite Containing Metal Oxide  

Im, Hyungu (School of Chemical Engineering & Material Science, Chung-Ang University)
Kim, Jooheon (School of Chemical Engineering & Material Science, Chung-Ang University)
Publication Information
Applied Chemistry for Engineering / v.20, no.3, 2009 , pp. 307-312 More about this Journal
Abstract
The block-co-polymer type thermosetting polysiloxane coordinated with metal oxide was synthesized to investigate the effect of metal oxide on the dispersity of metal powder in the polysiloxane/metal composite material. The metal powder in the polysiloxane/metal composite materials is better dispersed with metal oxide complex polysiloxane than the case without metal oxide. To understand the effect of quantities of metal oxide on the polysiloxane chain, the various polysiloxanes with different ratios of block unit were synthesized. Electrical conductivity was interpreted by percolation threshold theory to understand the dispersity of dense composite. The behavior of conductivity was in good agreement with theoretical value. The critical value was decreased as the quantities of metal oxide are increased. As a result, as the metal oxide increased on the polymer chain, the dispersity of metal filler was increased.
Keywords
polysiloxane; metal oxide; dispersity; percolation threshold;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Q. Xue, Euro. Polym. J., 40, 323 (2004)   DOI   ScienceOn
2 J. Wu and D. S. McLachlan, Phys. Rev. B., 56, 1236 (1997)   DOI   ScienceOn
3 B. Weidenfeller, M. Hofer, and F. Schilling, Comp: Part A, 33, 1041 (2002)   DOI   ScienceOn
4 J. V. Milewski and H. S. Katz, Handbook of Fillers and Reinforcements for Plastics, ed. J. V. Milewsk, 446, Van Nostrand Reinhold, New York (1978)
5 F. Lux, J. Mat. Sci., 28, 285 (1993)   DOI
6 E. P. Mamunya, V. V. Davydenko, P. Pissis, and E. V. Lebedev, Euro. Polym. J., 38, 1887 (2002)   DOI   ScienceOn
7 A. Uhlir., Bell Sys. Tech. J., 34, 105 (1955)   DOI
8 F. M. Smits, Bell Sys. Tech. J., 37, 711 (1958)   DOI
9 D. K. Schroeder, Semiconductor Material and Device Characterization, 18, Wiley, New Jersey (2006)
10 H. H. Lee, K. S. Chou, and Z. W. Shih, Int. J. Adh. Adh., 25, 437 (2005)   DOI   ScienceOn
11 F. Carmona and C. Mouney, J. Mat. Sci., 27, 1322 (1992)   DOI
12 V. E. Gul and L. Z. Shenfill, Conductive Polymer Composites, 270, Khimia, Moskow (1984)
13 H. H. Lee, H. T. Lee, and J. H. Kim, J. Kor. Ind. Eng. Che., 7, 633 (1996)
14 M. Q. Zhang, J. R. Xu, H. M. Zeng, Q. Huo, Z. Y. Zhang, and F. C. Yun, J. Mat. Sci., 30, 4226 (1995)   DOI   ScienceOn
15 P. M. Kogut and J. P. Straley, J. Phys. C, 12, 2151 (1979)
16 E. P. Mamunya, V. V. Davidenko, and E. V. Lebedev, Polym. Comp., 16, 318 (1995)
17 H. Scher and R. Zallen, J. Chem. Phys., 53, 3759 (1970)   DOI
18 M. S. Khun, Korea Pat. 072659 (1998)
19 D. H. Kang and B. C. Lee, Polymer (Korea), 28, 143 (2004)
20 R. K. McGeary, J. Am. Ceram. Soc., 44, 513 (1961)   DOI
21 B. Bridge, M. J. Folkes, and B. R. Wood, J. Phys. D: Appl. Phys., 23, 890 (1990)   DOI   ScienceOn
22 H. G. Im, H. S. Lee, and J. H. Kim, Polymer (Korea), 31, 543 (2007)
23 S. K. Bhattacharya, Metal-filled Polymers Properties and Applications, 166, Marcel Dekker, New York (1986)
24 I. Belberg, Phys. Rev. Lett., 59, 1305 (1987)   DOI   PUBMED   ScienceOn
25 J. R. Harper, A. D. Chipman, and G. M. Konkle, Rub. Wld., 137, 711 (1958)