Browse > Article

Synthesis and Photovoltaic Properties of Low Band Gap π-conjugated Polymers Based on 2-pyran-4-ylidene-malononitrile Derivatives  

You, Hyeri (Department of Polymer Engineering, Pukyong National University)
Shin, Woong (Department of Polymer Engineering, Pukyong National University)
Park, Jeong Bae (Department of Polymer Engineering, Pukyong National University)
Park, Sang Jun (Department of Polymer Engineering, Pukyong National University)
Lim, Jun Heok (Department of Chemical Engineering, Pukyong National University)
Kim, Joo Hyun (Department of Polymer Engineering, Pukyong National University)
Publication Information
Applied Chemistry for Engineering / v.20, no.3, 2009 , pp. 273-278 More about this Journal
Abstract
A series of poly[2-(2,6-dimethylpyran-4-ylidene)malononitrile-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene] (PM-PPV), poly[2-{2,6-Bis-[2-(5-bromothiophen-2-yl)-vinyl]-pyran-4-ylidene}-malononitrile-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene] (PMT-PPV) and poly[2-[2,6-Bis-(2-{4-[(4-bromophenyl)-phenylamino]-phenyl}-vinyl)-pyran-4-ylidene]-malononitrile-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene] (PMTPA-PPV) were synthesized by the Heck coupling reaction. The band gap of PM-PPV, PMT-PPV and PMTPA-PPV were 2.18 eV, 1.90 eV and 2.07 eV, respectively. The LUMO energy levels of PM-PPV, PMT-PPV and PMTPA-PPV were 3.65 eV, 3.54 eV and 3.62 eV, respectively and the HOMO energy levels of those were 5.83 eV, 5.61 eV and 5.52 eV, respectively. The photovoltaic devices based on the polymers was fabricated. The efficiency of the solar cells based on PM-PPV, PMT-PPV and PMTPA-PPV were 0.028%, 0.031% and 0.11%, respectively and the open circuit voltage (Voc) was 0.59 V~0.69 V under AM 1.5 G and 1 sun condition ($100mA/cm^2$).
Keywords
photovoltaic devices; Heck coupling; donor; low band gap;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftci, Appl. Phys. Lett., 80, 1288 (2002)   DOI   ScienceOn
2 D. Muhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, Adv. Mater., 18, 2884 (2006)   DOI   ScienceOn
3 J. H. Kim, H. Nam, and H. Lee., J. Polym. Sci. Part A: Polym. Chem. Ed., 44, 3729 (2006)   DOI   ScienceOn
4 X. Sun, Y. Liu, X. Xu, C. Yang, G. Yu, S. Chen, Z. Zhao, W. Qiu, Y. Li, and D. Zhu, J. Phys. Chem. B., 109, 10786 (2005)   DOI   ScienceOn
5 C. W. Tang, Appl. Phys. Lett., 48, 183 (1986)   DOI   ScienceOn
6 J. H. Kim and H. Lee, Chem. Mater., 14, 2270 (2002)   DOI   ScienceOn
7 G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1995)   DOI   ScienceOn
8 Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. M$\ddot{u}$hlbacher, M. Scharber, and C. Brabec, Macromolecules, 40, 1981 (2007)   DOI   ScienceOn
9 C. Wu, J. C. Strum, R. A. Register, J. Tian, E. P. Dana, and M. E. Thompson, IEEE Trans. Electron Devices, 44, 1269 (1997)   DOI   ScienceOn
10 J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and C. G. Bazan, Nature Mater., 6, 497 (2007)   DOI   ScienceOn
11 J. Xue, S. Uchida, B. P. R, and, S. R. Forrest, Appl. Phys. Lett., 84, 3013 (2004)   DOI   ScienceOn