Browse > Article

Microwave Syntheses of Subphthalocyanine Derivatives and Their Properties  

Kim, Jae Hwan (Division of Applied Chemical Engineering, Pukyong National University)
Heo, Jin (Division of Applied Chemical Engineering, Pukyong National University)
Kang, Boo Min (Division of Applied Chemical Engineering, Pukyong National University)
Son, Dae-Hee (Division of Applied Chemical Engineering, Pukyong National University)
Lee, Geun-Dae (Division of Applied Chemical Engineering, Pukyong National University)
Hong, Seong-Soo (Division of Applied Chemical Engineering, Pukyong National University)
Park, Seong-Soo (Division of Applied Chemical Engineering, Pukyong National University)
Publication Information
Applied Chemistry for Engineering / v.20, no.2, 2009 , pp. 154-158 More about this Journal
Abstract
Subphthalocyanine (SubPc) derivatives with different kind of substitute groups were synthesized successfully from various precursors using conventional and microwave heating sources. The chemical structure of precursor and product was determined by $^{1}H-NMR$ and FT-IR spectrometer. Also, spectroscopic property was measured by UV-Vis spectrometer. Compared to the conventional synthesis, it was found that SubPc derivatives were synthesized for a shorter reaction time with a higher synthetic yield in the microwave synthesis.
Keywords
microwave; subphthalocyanine; derivatives; synthesis;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 N. Kobayashi, R. Kondo, S. Nakajima, and T. Osa, J. Am. Chem. Soc., 112, 9640 (1990)   DOI
2 S. S. Park, E. H. Hwang, B. C. Kim, and H. C. Park, J. Am. Ceram. Soc., 83, 1341 (2000)   DOI   ScienceOn
3 K. S. Jung, J. H. Kwon, S. M. Shon, J. P. Ko, J. S. Shin, and S. S. Park, J. Mater. Sci., 39, 723 (2004)   DOI   ScienceOn
4 A. Meller and A. Ossko, Monatsh. Chem., 103, 150 (1972)   DOI
5 J. Rauschnabel and M. Hanack, Tetrahedron Lett., 36, 1629 (1995)   DOI   ScienceOn
6 Supramolecular Photosensitive and Electroactive Materials, ed. H. S. Nalwa, 1, Academic Press, New York (2001)
7 H. Kietaibl, Monatsh. Chem., 105, 405 (1974)   DOI
8 C. G. Claessens, D. Gonz$\acute{a}$lez-Rodr$\acute{i}$guez, and T. Torres, Chem. Rev., 102, 835 (2002)   DOI   ScienceOn
9 J. G. Young and W. Onyebuagu, J. Org. Chem., 55, 2155 (1990)   DOI
10 Microwave-Enhanced Chemistry, eds. H. M. S. Kingston and S. J. Haswell, An American Chemical Society, Washington DC (1997)
11 J. D. Ford and D. C. T. Pei, J. Microwave Power, 2, 61 (1967)   DOI
12 L. Perreux and A. Loupy, Tetrahedron, 57, 9199 (2001)   DOI   ScienceOn
13 J. Zyss and I. Ledoux, Chem. Rev., 94, 77 (1994)   DOI   ScienceOn
14 R. S. Iglesias, C. G. Claessens, T. Torres, A. Rehman, and D. M. Guldi, Chem. Commun., 2113 (2005)   DOI   ScienceOn
15 W. R. Tinga, MRS Symp. Proc., 124, 33 (1994)
16 B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Marti, S. Brasselet, I. Ledoux, and J. Zyss, J. Am. Chem. Soc., 120, 12808 (1998)   DOI   ScienceOn
17 T. S. Laverghetta, Practical Microwaves, Prentice-Hall, New Jersey (1995)
18 D. W$\ddot{o}$hrle, M. Eskes, K. Shigehara, and A. Yamada, Synthesis., 195 (1993)
19 C. Gabriel and S. Gabriel, Chem. Soc. Rev., 27, 213 (1998)   DOI   ScienceOn
20 R. D. George and A. W. Snow, J. Heterocycl. Chem., 32, 495 (1995)   DOI   ScienceOn