Browse > Article

Hydrolytic Kinetic Resolution of Racemic Alkyl-glycidyl Derivatives by using Dimeric Chiral Salen Catalyst Containing Ga, In and TlCl3  

Shin, Chang-Kyo (Department of Chemical Engineering, Inha University)
Rahul, B. Kawthekar (Department of Chemical Engineering, Inha University)
Kim, Geon-Joong (Department of Chemical Engineering, Inha University)
Publication Information
Applied Chemistry for Engineering / v.18, no.3, 2007 , pp. 218-226 More about this Journal
Abstract
The stereoselective synthesis of chiral terminal epoxides is of immense academic and industrial interest due to their utility as versatile starting materials as well as chiral intermediates. In this study, new dinuclear chiral Co (salen) complexes bearing gallium-, indium- and tallium-chloride have been synthesized and characterized. The mass and EXAFS spectra provided the direct evidence of formation of dinuclear complex. Their catalytic activity and selectivity have been demonstrated for the asymmetric ring opening of various terminal epoxides having ether or ester groups by hydrolytic kinetic resolution technology. The easily prepared dimeric complexes exhibited very high enantioselectivity for the asymmetric ring opening of epoxides with $H_2O$ nucleophile, providing enantiomerically enriched terminal epoxides (> 99% ee). The dimeric structured chiral salen showed remarkably enhanced reactivity and may be employed substantially lower loadings than its monomeric analogues. The system described in this work is very efficient for the synthesis of chiral epoxide and 1,2-diol intermediates
Keywords
chiral salen; asymmetric ring opening; epoxide; enantioselectivity;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould, M. E. Furrow, and E. N. Jacobsen, J. Am. Chem. Soc., 124, 1307 (2002)   DOI   ScienceOn
2 S. J. Gluber, C. M. Harris, and E. Sinn, J. Chem. Phys., 49, 2183 (1969)   DOI
3 S. S. Thakur, W. Li, S. J. Kim, and G.-J. Kim, Tetrahedron Lett., 46, 2263 (2005)
4 M. Tokunaga, J. F. Larrow, F. Kakiuchi, and E. N. Jacobsen, Science, 277, 936 (1997)
5 G. Reed, J. karl Konsler, and E. N. Jacobsen, J. Am. Chem. Soc., 120, 10780 (1998)
6 S. J. Gluber, C. M. Harris, and E. Sinn, Inorganic Chemistry, 7, 269 (1968)
7 C. K. Shin, S. J. Kim, and G.-J. Kim, Tetrahedron Lett, 45, 7429 (2004)
8 J. F. Larrow and E. N. Jacobsen, Topics in Organomet. Chem., 6, 123 (2004)
9 M. Shibasaki, H. Sasai, and T. Arai, Angew. Chem. Int. Ed., 36, 1236 (1997)
10 J. M. Ready, and E. N. Jacobsen, J. Am. Chem. Soc., 123, 2687 (2001)   DOI   ScienceOn
11 J. M. Ready, and E. N. Jacobsen, Angew. Chem. Int. Ed., 41, 1374 (2002)   DOI   ScienceOn
12 M. E. Furrow, S. E. Schaus, and E. N. Jacobsen, J. Org. Chem., 63, 6776 (1998)
13 D. A. Annie and E. N. Jacobson, J. Am. Chem. Soc., 121, 4147 (1999)
14 R. A. Sheldon, Chirotechnology-Industrial Synthesis of Optical Active Compounds, Marcel Dekker, New York (1994)
15 H. B. Kagan, Comprehensive Asymmetric Catalysis, eds. E. N. Jacobsen, A. Pfaltz, and H. Yamamoto, Chap.2, Springer, Heidelberg (1999)
16 J. M. Keith, J. F. Larrow, and E. N. Jacobsen, Adv. Synth. Catal., 343, 5 (2001)   DOI   ScienceOn