Browse > Article

Functions and Power Laws of Critical Micelle Concentration with Respect to Temperature  

Lim, Kyung-Hee (Department of Chemical Engineering, Chung-Ang University)
Kim, Hong-Un (Hyosung R&D Center)
Kang, Kye-Hong (Amorepacific R&D Center)
Publication Information
Applied Chemistry for Engineering / v.17, no.5, 2006 , pp. 443-450 More about this Journal
Abstract
Micelles have been used in many applications. In these applications it is of prime importance to know how the critical micelle concentration (CMC), above which the micelles are formed, depends on temperature. Up to date polynomial functions of temperature have been used to describe temperature dependence of CMC. In this article it is shown that such polynomials are inadequate tools to express thermal behavior of CMC. Hence, new equations of CMC(T) have been derived on the basis of rigorous thermodynamic equations and experimental observations on CMCs. The new equations fit CMC data excellently, and further they lead to a power law for the CMC. The exponent of the power-law expression is 2 irrespective of surfactant systems, which points to the generality of newly found equations.
Keywords
micellization; critical micelle concentration; tempeature dependence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Sun and J. Y. Ying, Nature, 389, 704 (1997)   DOI   ScienceOn
2 S. A. Bragshaw, E. Prouzet, and T. J. Pinnavaia, Science, 269, 1242 (1995)   DOI
3 Y. Moroi, Micelles: Theoretical and Applied Aspects, Chapter 11, Plenum, New York (1992)
4 B. D. Flockhart, J. Colloid Sci., 16, 484 (1961)   DOI   ScienceOn
5 E. H. Crook, D. B. Fordyce, and G. F. Trebbi, J. Phys. Chem., 67, 1987 (1963)   DOI
6 La Mesa, C., Z. A. Ranieri, and M. Terenzi, J. Surface Sci. Tech., 6, 151 (1990)
7 C. La Mesa, J. Phys. Chem., 94 323 (1990)   DOI
8 G. C. Kresheck and W. A. Hargraves, J. Colloid Interface Sci., 48, 481 (1974)   DOI   ScienceOn
9 B. Madan and B. Lee, Biophys. Chem., 51, 279 (1994)   DOI   ScienceOn
10 G. Sugihara and M. Hisatomi, J. Colloid Interface Sci., 219, 31 (1999)   DOI   ScienceOn
11 V. Mosquera, J. M. del Rip, D. Attwood, M. Garcia, M. N. Jones, G. Prieto, M. J. Suarez, and F. Sarmiento, J. Colloid Interface Sci., 206, 66 (1998)   DOI   ScienceOn
12 B. Lindman and H. Wennerstrom, Topics in Current Chemistry, vol. 87, Springer-Verlag, Berlin (1980)
13 La Mesa, C., Colloid Polym. Sci., 268, 959 (1990)   DOI
14 H. Morawetz, Adv. Catal., 20, 341 (1969)   DOI
15 K.-H. Kang, H.-U. Kim, Lim, K.-H., Colloid Surface A, 189, 113 (2001)   DOI
16 G. Sugihara and M. Hisatomi, J. Colloid Interface Sci., 219, 31 (1999)   DOI   ScienceOn
17 H.-U. Kim and K.-H. Lim, Bull. Korean Chem. Soc., 24, 1449 (2003)   DOI
18 R. Lumry and S. Rajender, Biopolym., 9, 1125 (1970)   DOI   ScienceOn
19 K.-H. Lim, manuscript in preparation
20 J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Hresge, K. D. Smith, T.-W. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schenker, J. Am. Chem. Soc., 114, 10834 (1992)   DOI   ScienceOn
21 H.-U. Kim and K.-H. Lim, Kor. J. Oil Chem. Soc., 18, 325 (2001)
22 D. Attwood, E. Boitard, J.-P. Dubes, and H. Tachoire, J. Colloid Interface Sci., 227, 356 (2000)   DOI   ScienceOn
23 N. Muller, Langmuir 9, 96 (1993)   DOI
24 C. Jolicoeur and R. P. Philip, Can. J. Chem., 52, 1834 (1974)   DOI
25 M. Fugiwara, T. Okano, T-H. Nakashima, A. A. Nakamura, and H. Sugihara, Colloid Polym. Sci., 275, 474 (1977)   DOI   ScienceOn
26 N. B. Stasiuk and L. L. Schramm, J. Colloid Interface Sci., 324 , 178 (1996)
27 J. A. Stead and H. J. Taylor, J. Colloid Interface Sci., 30, 482 (1969)   DOI   ScienceOn
28 P. Taboada, D. Attwood, M. Garcia, M. N. Jones, J. M. Ruso, V. Mosquera, and F. Sarmiento, J. Colloid Interface Sci., 221, 242 (2000)   DOI   ScienceOn
29 M. P. Pileni, Langmuir, 13, 3266 (1997)   DOI   ScienceOn
30 P. Becher, in M. J. Schick (Ed.), Nonionic Surfactants, Marcel Dekker, New York (1967)
31 D. D. Miller, L. J. Magid, and D. F. Evans, J. Phys. Chem., 94, 5921 (1990)   DOI
32 H.-U. Kim and K.-H. Lim, Colloid Surface A, 235, 121 (2004)   DOI
33 S. Paula, W. Sus, J. Tuchtenhagen, and A. Blume, J. Phys. Chem., 99, 11742 (1995)   DOI   ScienceOn
34 S. J. Gill, N. F. Nichols, and I. Wadso, J. Chem. Thermodynamics, 8, 445 (1976)   DOI
35 La Mesa, C., Colloid Surf., 3, 329 (1989)   DOI   ScienceOn
36 J. H. Fendler, Membrane Mimetic Approach to Advanced Materials, Springer-Verlag, Berlin (1992)
37 A. Kiraly and I. Dekany, J. Colloid Interface Sci., 242, 214 (2002)   DOI   ScienceOn
38 L.-J. Chen, S.-Y. Lin, C.-C. Huang, and E.-M. Chen, Colloid Surf. A, 135, 175 (1998)   DOI
39 B. Jonsson, B. Lindman, K. Holmberg, and B. Kronberg, Surfactants and Polymers in Aqueous Solution, John Wiley and Sons, New York (1997), p. 84
40 J. H. Fendler, Membrane Mimetic Chemistry, Characterizations and Applications of Micelles, Microemulsion, Monolayers, Bilayers, Vesicles, Host-Guest Systems and Polyions, John Wiley, New York (1982)
41 V. C. Krishnan and L. H. Friedman, J. Solution Chem., 2, 37 (1974)   DOI
42 K.-H. Lim, Colloids, Interfaces, and Polymers (Lecture Note) (2005)
43 D. Mukergee and K. J. Mysels, Critical Micelle Concentrations of Aqueous Surfactant Systems, NSRDS-NBS 36 (1971)
44 P. Gilli, V. Ferretti, G. Gilli, and P. A. Borea, J. Phys. Chem. 98, 1515 (1993)
45 J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed., Academic Press, San Diego (1992), p. 381
46 Y. Lu, R. Ganguli. C. A. Drewien, M. T. Anderson, C. J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. H. Huang, and J. I. Zink, Nature, 389, 364 (1997)   DOI   ScienceOn
47 M. A. Fox, Res. Chem. Intermed., 15, 153 (1991)   DOI
48 V. Tomasic, A. Chittofrati, and N. Kallay, Colloid Surf. A, 104, 95 (1995)   DOI   ScienceOn
49 H.-U. Kim, Ph. D. Dissertation, Chung-Ang University (2002)
50 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature, 359, 710 (1992)   DOI
51 http://akunger1.chemie.uni-maiz.de/Allan/Welcome.html