Browse > Article

IR Study on the Adsorption of Carbon Monoxide on Silica Supported Ruthenium-Nickel Alloy  

Park, Sang-Youn (Department of Chemistry, College of Natural Science)
Yoon, Dong-Wook (Department of Chemistry, College of Natural Science)
Publication Information
Applied Chemistry for Engineering / v.17, no.4, 2006 , pp. 349-356 More about this Journal
Abstract
We have investigated adsorption and desorption properties of CO adsorption on silica supported Ru/Ni alloys at various Ru/Ni mole content ratio as well as CO partial pressures using Fourier transform infrared spectrometer (FT-IR). For Ru-$SiO_{2}$ sample, four bands were observed at $2080.0cm^{-1}$, $2021.0{\sim}2030.7cm^{-1}$, $1778.9{\sim}1799.3cm^{-1}$, $1623.8cm^{-1}$ on adsorption and three bands were observed at $2138.7cm^{-1}$, $2069.3cm^{-1}$, $1988.3{\sim}2030.7cm^{-1}$ on vacumn desorption. For Ni-$SiO_{2}$ sample, four bands were observed at $2057.7cm^{-1}$, $2019.1{\sim}2040.3cm^{-1}$, $1862.9{\sim}1868.7cm^{-1}$, $1625.7cm^{-1}$ on adsorption and two bands were observed at $2009.5{\sim}2040.3cm^{-1}$, $1828.4{\sim}1868.7cm^{-1}$ on vacumn desorption. These absorption bands correspond with those of the previous reports approximately. For Ru/Ni(9/1, 8/2, 7/3, 6/4, 5/5; mole content ratio)-$SiO_{2}$ samples, three bands were observed at $2001.8{\sim}2057.7cm^{-1}$, $1812.8{\sim}1926.5cm^{-1}$, $1623.8{\sim}1625.7cm^{-1}$ on adsorption and three bands were observed at $2140.6cm^{-1}$, $2073.1cm^{-1}$, $1969.0{\sim}2057.7cm^{-1}$ on vacumn desorption. The spectrum pattern observed for Ru/Ni-$SiO_{2}$ sample at 9/1 Ru/Ni mole content ratio on CO adsorption and on vacumn desorption is almost like the spectrum pattern observed for Ru-$SiO_{2}$ sample. But the spectrum patterns observed for Ru/Ni-$SiO_{2}$ samples under 8/2 Ru/Ni mole content ratio on CO adsorption and vacumn desorption are almost like the pattern observed for $Ni-SiO_{2}$ sample. It may be suggested surfaces of alloy clusters on the Ru/Ni-$SiO_{2}$ samples contain more Ni components than the mole content ratio of the sample considering the above phenomena. With Ru/Ni-$SiO_{2}$ samples the absorption band shifts may be ascribed to variations of surface concentration, strain variation due to atomic size difference, variation of bonding energy and electronic densities, and changes of surface geometries according to surface concentration variation. Studies for CO adsorption on Ru/Ni alloy cluster surface by LEED and Auger spectroscopy, interation between Ru/Ni alloy cluster and $SiO_{2}$, and MO calculation for the system would be needed to look into the phenomena.
Keywords
CO adsorption; ruthenium-nickel alloy; silica support;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Armigliato, S. Bigi, P. Moggi, S. Papadopulos, G. Predieri, G. Salviati, and E. Sappa, Mater. Chem. Phys., 29, 251 (1991)   DOI
2 K. L. Kostov, H. Rauscher, and D. Menzel, Surface Science, 278, 62 (1992)   DOI
3 C. W. Olsen and R. I. Masel, Surface Science, 201, 444 (1988)   DOI   ScienceOn
4 P. Hollins, Surface Science Reports, 16, 51 (1992)   DOI
5 W. Erley, H. Ibach, S. Lewald, and H. Wagner, Surface Science, 83, 585 (1979)   DOI   ScienceOn
6 L. Lynds, Spectrochem. Acta, 20, 1369 (1964)   DOI   ScienceOn
7 G. Predieri, P. Moggi, S. Papadopulos, A. Armigliato, S. Bigi, and E. Sappa, J. Chem. Soc., Chem. Commun., 1736 (1990)
8 R. Raval, Surface Science, 331, 1 (1995)   DOI
9 J. M. rynkowski, T. Paryjczak, and M. Lenik, Applied Catalysis A: General, 126, 257 (1995)   DOI   ScienceOn
10 H. Pnur, D. Menzel, F. M. Hoffman, A. Ortega, and A. M. Bradshaw, Surface Science, 93, 431 (1980)   DOI
11 M. Vrinat, M. Lacix, M. Breysse, A. Bellaloui, L. Mosoni, and M. Roubin, Proc. 9th International Congress on Catalysis, Calgary, 1988, eds. M. J. Phillis and M. Ternan, 1, 88 The Chemical Institute of Canada, Ottawa (1988)
12 R. A. Dalla Betta, J. Phys. Chem., 79, 2519 (1975)   DOI
13 M. Liao, C. R. Cabrera, and Y. Ishikawa, Surface Science, 445, 267 (1988)
14 P. S. Bagus and W. M. Muller, Chem. Phys. Letters, 115, 540 (1985)   DOI   ScienceOn
15 A. Ishihara, E. W. Quian, N. Finahari, I. P. Sutrisuna, and T. Kabe, Fuel, 84, 1462 (2005)
16 Y. J. Chabal, Surface Science Reports, 8, 211 (1988)   DOI   ScienceOn
17 T. Fleisch, G. L. Ott, W. N. Delgass, and N. Winograd, Surface Science, 81, 1 (1988)   DOI   ScienceOn
18 M. Cerro-Alarcon, A. Moroto-Valiente, I. Rodrigues-Ramos, and A. Guerrero-Ruis, Applied Catalysis A: General, 275, 257 (2004)   DOI
19 H. Aizawa and S. Tsuneyuki, Surface Science, 399, L364 (1998)   DOI   ScienceOn
20 J. W. Lee, S. Chang, H. Pak, K. J. Shin, M. Kim, and W. I. Chung, Bull. Korean Chem. Soc., 9, 137 (1988)
21 G. Blyholder and M. C. Allen, J. Am. Chem. Soc., 79, 756 (1975)   DOI
22 F. M. Hoffman and M. D. Weisel, Surface Science, 253, 59 (1988)   DOI
23 R. P. Eischens, S. A. Francis, and W. A. Pliskin, J. Phys. Chem., 60, 194 (1956)   DOI
24 R. A. Campbell, J. Rodrigez, and D. W. Goodman, Surface Science, 256, 272 (1991)   DOI   ScienceOn
25 S. S. Andersson, Solid St. Comm., 21, 75 (1977)   DOI   ScienceOn
26 M. A. Vannice, J. Catal., 37, 449 (1975)   DOI   ScienceOn
27 N. Sheppard and T. T. Nguyen, Advances in infrared and raman spectroscopy, eds. R. J. H. Clark and R. E. Hester, 5, 67, Heydon, London (1978)
28 Mary F. Brown and Richard D. Gonzalez, J. Phys. Chem., 80, 1731 (1976)   DOI