Browse > Article

Effects of External Voltages and Widths on Fluid Velocity in Microchannel  

Kim, Jin-Yong (Department of Chemical Engineering, Chungnam National University)
Lee, Hyo-Song (Department of Chemical Engineering, Chungnam National University)
Kim, Jeong-Soo (Department of Chemical Engineering, Chungnam National University)
Rhee, Young Woo (Department of Chemical Engineering, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.16, no.2, 2005 , pp. 238-242 More about this Journal
Abstract
In this work, Polydimethylsiloxane (PDMS) and SU-8 (Microchem, USA) photoresist were used to make the microchannel by soft lithographic method. To investigate the effects of external voltages and widths of the microchannel, we made the microchannel by soft lithographic method. To investigate the effects of external voltages and widths of the microchannel, we made the microchannel with various widths: $100{\mu}m,\;200{\mu}m$ and $300{\mu}m$. And each micorchannel was supplied with external voltage, respectively. As a result, the fluid velocity increased with an increase of the external voltage at the same width. It was speculated that the electrical double layer was condensed and the zeta potential increased with increase of the external voltage. The fluid velocity increased with the microchannel width increase at the same external voltage. It is concluded that the resistance in the microchannel decreased as the microchannel width increased.
Keywords
microchannel; microfluidics; PDMS; soft lithography; electrical double layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. J. Madou, Fundamentals in Microfabrication, CRC press, Boca Raton (1997)
2 Y. Liu, J. C. Fanguy, J. M. Ledsoe, and C. S. Henry, Anal. Chem., 72, 5939 (2000)   DOI   ScienceOn
3 N. A. Polson and M. A. Hayes, Anal. Chem., 72, 1088 (2000)   DOI   ScienceOn
4 C. S. Lee, D. Mcmanigill, C. T. Wu, and B. Patel, Anal. Chem., 63, 1519 (1991)   DOI
5 R. F. Probstein, Physicochemical Hydrodynamics, John Wiley and Sons, Inc. (1994)
6 R. M. McCormick, Anal. Chem., 60, 2322 (1988)   DOI   ScienceOn
7 T. Murakami, S. Kuroda, and Z. Osawa, J. Colloid Interface Sci., 202, 37 (1998)   DOI   ScienceOn
8 M. A. Hayes and A. G. Ewing, Anal. Chem., 64, 512 (1992)   DOI   ScienceOn
9 M. H. Oddy and J. G. Santiago, J. Colloid Interface Sci., 269, 192 (2004)   DOI   ScienceOn
10 Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, Microelectronic Engineering, 73, 876 (2004)   DOI   ScienceOn
11 J. P. Kutter, S. C. Jacobson, and J. M. Ramsey, Anal. Chem., 69, 5165 (1997)   DOI   ScienceOn
12 M. N. Kozicki, P. Maroufkhani, and M. Mitkova, Superlattices and Microstructures 34, 467 (2003)   DOI   ScienceOn
13 D. Sinton, C. E. Canseco, L. Ren, and D. Li, J. Colloid Interface Sci., 254, 184 (2002)   DOI   ScienceOn
14 A. Manz and H. Becker, Microsystem Technology in Chemistry and Life Science, Springer (1998)
15 X. Ren, M. Bachman, C. Sims, G. P. Li, and N. Allbritton, J. Chromatography. B, 762, 117 (2001)   DOI
16 Y. Deng, H. Zhang, and J. Henion, Anal. Chem., 73, 1432 (2001)   DOI   ScienceOn
17 H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, Polymer, 41, 6851 (2000)   DOI   ScienceOn
18 K. I. Inatomi, S. I. Izuo, S. S. Lee, H. Ohji, and S. Shiono, Microelectronic Engineering, 70, 13 (2003)   DOI   ScienceOn
19 J. F. Chen, Q. H. Jin, J. L. Zhao, and Y. S. Xu, Biosensors and Bioelectronics, 17, 619 (2002)   DOI   ScienceOn
20 J. D. Kim, Interface Phenomenology, Aruka (2000)
21 D. Belder, K. Elke, and H. Husmann, J. Chromatography. A, 868, 63 (2000)   DOI
22 C. S. Lee, W. C. Blanchard, and C. T. Wu, Anal. Chem., 62, 1550 (1990)   DOI
23 M. U. Kopp, A. J. DeMello, and A. Manz, Science, 280, 1046 (1998)   DOI   ScienceOn
24 Y. Berdichevsky, J. Khandurina, A. Guttman, and Y. H. Lo, Sensors and Actuators B, 97, 402 (2004)   DOI   ScienceOn