Browse > Article
http://dx.doi.org/10.7776/ASK.2022.41.6.669

REVIEW: Dynamic force effects on batteries  

Sunghyun, Jie (School of Mechanical Engineering, Pusan National University)
Taeksoo, Jung (School of Mechanical Engineering, Pusan National University)
Seunghoon, Baek (School of Mechanical Engineering, Pusan National University)
Byeongyong, Lee (School of Mechanical Engineering, Pusan National University)
Abstract
Lithium-ion battery has been used for lots of electronic devices. With the popularization of batteries, researchers have focused on batteries' electrochemical performances by environmental conditions, such as temperature, vibration, shock and charging state. Meanwhile, due to very serious global warming, car companies have started using lithium-ion batteries even in cars, replacing internal combustion engines. However, batteries have been developed based on non-moving systems which is totally different from vehicles. In the line of the differences, researchers have tried to reveal relationship between variables from dynamic systems and batteries. In this review, we discuss the comprehensive effect of vibration and shock on batteries. We firstly summarize vibration profiles and effect of normal vibration on batteries. We also sum up effect of shock and penetration on batteries and introduce how ultrasound influences on batteries. Lastly, outlook for the battery design as well as dynamic design of EVs are discussed.
Keywords
Vibration; Ultrasound; Acoustics; Lithium-ion battery; Electric vehicles;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 D. Choi, Z. Gao, and W. Jiang, "Attention to global warming," RFS. 33, 1112-1145
2 L. Al-Ghussain, "Global warming: Review on driving forces and mitigation," EP & SE. 38, 13-21 (2018).
3 B. Scrosati, J. Hassoun, and Y.-K. Sun, "Lithium-ion batteries. A look into the future," Energy Environ. Sci. 4, 3287-3295 (2011).   DOI
4 H. Horie, T. Abe, T. Kinoshita, and Y. Shimoida, "A study on an advanced lithium-ion battery system for EVs," WEVJ, 2, 113-119 (2008).   DOI
5 X. Chen, J. Wang, K. Zhao, and L. Yang, "Electric vehicles body frame structure design method: An approach to design electric vehicle body structure based on battery arrangement," Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 236, 2025-2042 (2022).   DOI
6 X. Han, M. Ouyang, L. Lu, J. Li, Y. Zheng, and Z. Li, "A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification," J. Power Sources, 251, 38-54 (2014).   DOI
7 Q. Zhang and R. E. White, "Capacity fade analysis of a lithium ion cell," J. Power Sources, 179, 793-798 (2008).   DOI
8 A. Mukhopadhyay and B. W. Sheldon, "Deformation and stress in electrode materials for Li-ion batteries," Progress in Materials Science, 63, 58-116 (2014).   DOI
9 R. Jurgen, "SAE J2464 "EV & HEV Rechargeable Energy Storage System (RESS) safety and abuse testing procedure", SAE Technical Paper, Tech. Rep., 2010.
10 D. H. Doughty and E. P. Roth, "A general discussion of Li ion battery safety," ECS Interface, 21, 37 (2012).
11 J. M. Hooper and J. Marco, "Experimental modal analysis of lithium-ion pouch cells," J. Power Sources, 285, 247-259 (2015).   DOI
12 J. Galos, K. Pattarakunnan, A. S. Best, I. L. Kyratzis, C. H. Wang, and A. P. Mouritz, "Energy storage structural composites with integrated lithium-ion batteries: a review," Adv. Mater. Technol. 6, 2001059 (2021).
13 L. Zhang, Z. Mu, and X. Gao, "Coupling analysis and performance study of commercial 18650 lithium-ion batteries under conditions of temperature and vibration," Energies, 11, 2856 (2018).
14 X. Hua and A. Thomas, "Effect of dynamic loads and vibrations on lithium-ion batteries," J. Low Freq. Noise Vib. Act. Control. 40, 1927-1934 (2021).   DOI
15 M. J. Brand, S. F. Schuster, T. Bach, E. Fleder, M. Stelz, S. Glaser, J. Muller, G. Sextl, and A. Jossen, "Effects of vibrations and shocks on lithium-ion cells," J. Power Sources, 288, 62-69 (2015).   DOI
16 A. B. K. Parasumanna, U. S. Karle, and M. R. Saraf, "Material characterization and analysis on the effect of vibration and nail penetration on lithium ion battery," World Electr. Veh. J. 10, 69 (2019).
17 M. Spielbauer, P. Berg, J. Soellner, J. Peters, F. Schaeufl, C. Rosenmuller, O. Bohlen, and A. Jossen, "Experimental investigation of the failure mechanism of 18650 lithium-ion batteries due to shock and drop," J. Energy Storage, 43, 103213 (2021).
18 J. Hooper and J. Marco, "Defining a representative vibration durability test for electric vehicle (EV) rechargeable energy storage systems (RESS)," World Electr. Veh. J. 8, 327-338 (2016).
19 X. Hua, A. Thomas, and K. Shultis, "Recent progress in battery electric vehicle noise, vibration, and harshness," Science Progress, 104, 00368504211005224 (2021).
20 J. Hooper and J. Marco, "Understanding vibration frequencies experienced by electric vehicle batteries," Proc. IET HEVC, 1-6 (2013).
21 H. Su, "Vibration test specification for automotive products based on measured vehicle load data," SAE Transactions, 571-581 (2006).
22 Y. Gao, F. Qiao, J. You, C. Shen, H. Zhao, J. Gu, Z. Ren, K. Xie, and B. Wei, "Regulating electrodeposition behavior through enhanced mass transfer for stable lithium metal anodes," JCC, 55, 580-587 (2021).
23 J. Zhang, Z. Zhou, Y. Wang, Q. Chen, G. Hou, and Y. Tang, "Ultrasonic-assisted enhancement of lithiumoxygen battery," Nano Energy, 102, 107655 (2022).
24 R. Hilton, D. Dornbusch, K. Branson, A. Tekeei, and G. Suppes, "Ultrasonic enhancement of battery diffusion," Ultrasonics sonochemistry, 21, 901-907 (2014).   DOI
25 H. Yamaura, M. Ishihama, and K. Togai, "Design and evaluation of output profile shaping of an internal combustion engine for noise & vibration improvement," SAE Int. J. Engines, 7, 1514-1522 (2014).   DOI
26 L. Wang, Y.-L. Lee, R. Burger, and K. Li, "Multiple sinusoidal vibration test development for engine mounted components," JFAP, 13, 227-240 (2013).   DOI
27 K. Ohta, K. Amano, A. Hayashida, G. Zheng, and I. Honda, "Analysis of piston slap induced noise and vibration of internal combustion engine (effect of piston profile and pin offset)," J. Environ. Eng. 6, 712-722 (2011).   DOI
28 C. Braccesi, F. Cianetti, L. Goracci, and M. Palmieri, "Sine-Sweep qualification test for engine components: The choice of simulation technique," Proc. AIAS International Conference on Stress Analysis, 360-369 (2019).
29 A. Yoshino, "The birth of the lithium-ion battery," Angewandte Chemie International Edition, 51, 5798-5800 (2012).   DOI
30 J. F. Lang and G. Kjell, "Comparing vibration measurements in an electric vehicle with standard vibration requirements for Li-ion batteries using power spectral density analysis," IJEHV, 7, 272-286 (2015).   DOI
31 J. M. Hooper and J. Marco, "Characterising the invehicle vibration inputs to the high voltage battery of an electric vehicle," J. Power Sources, 245, 510-519 (2014).   DOI
32 G. Hunt, "Electric vehicle battery test procedures manual (Rev. 2)", US Department of Energy, Tech. Rep., 1996.
33 UN-ECE Regulation No. 100, Uniform Provisions concerning the Approval of Vehicles with regard to Specific Requirements for the Electric Power Train, 1995.
34 P. Berg, M. Spielbauer, M. Tillinger, M. Merkel, M. Schoenfuss, O. Bohlen, and A. Jossen, "Durability of lithium-ion 18650 cells under random vibration load with respect to the inner cell design," Journal of Energy Storage, 31, 101499
35 L. Somerville, J. M. Hooper, J. Marco, A. McGordon, C. Lyness, M. Walker, and P. Jennings, "Impact of vibration on the surface film of lithium-ion cells," Energies, 10, 741 (2017).
36 J. M. Hooper, J. Marco, G. H. Chouchelamane, and C. Lyness, "Vibration durability testing of nickel manganese cobalt oxide (NMC) lithium-ion 18650 battery cells," Energies, 9, 52 (2016).
37 O. A. Bangal, V. Chaturvedi, P. A. Babu, and M. V. Shelke, "Impedance analysis and equivalent circuit modelling of cells subjected to sinusoidal vibration test using electrochemical impedance spectroscopy," Proc. IEEE ITEC, 1-6, (2019).
38 D. Aurbach, "Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries," J. Power Sources, 89, 206-218 (2000).   DOI
39 Y. Xia, T. Wierzbicki, E. Sahraei, and X. Zhang, "Damage of cells and battery packs due to ground impact," J. Power Sources, 267, 78-97 (2014).   DOI
40 T. Kisters, E. Sahraei, and T. Wierzbicki, "Dynamic impact tests on lithium-ion cells," Int. J. Impact Eng. 108, 205-216 (2017).   DOI
41 G. Kermani and E. Sahraei, "Dynamic impact response of lithium-ion batteries, constitutive properties and failure model," RSC Adv, 9, 2464-2473 (2019).   DOI
42 A. D. Muresanu and M. C. Dudescu, "Numerical and experimental evaluation of a battery cell under impact load," Batteries, 8, 48 (2022).
43 S. Tobishima, J. Yamaki, and T. Hirai, "Safety and capacity retention of lithium ion cells after long periods of storage," J. Appl. Electrochem. 30, 405-410 (2000).   DOI
44 S. Kim, Y. S. Lee, H. S. Lee, and H. L. Jin, "A study on the behavior of a cylindrical type Li-Ion secondary battery under abnormal conditions," Materialwissenschaft und Werkstofftechnik, 41, 378-385 (2010).   DOI
45 I. V. Avdeev and M. Gilaki, "Explicit dynamic simulation of impact in cylindrical lithium-ion batteries," ASME IMECE, 461-467 (2012).
46 I. Avdeev and M. Gilaki, "Structural analysis and experimental characterization of cylindrical lithiumion battery cells subject to lateral impact," J. Power Sources, 271, 382-391 (2014).
47 M. Gilaki and I. Avdeev, "Impact modeling of cylindrical lithium-ion battery cells: a heterogeneous approach," J. Power Sources, 328, 443-451 (2016).   DOI
48 J. Xu, B. Liu, X. Wang, and D. Hu, "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, 172, 180-189 (2016).   DOI
49 T. M. Bandhauer, S. Garimella, and T. F. Fuller, "A critical review of thermal issues in lithium-ion batteries," J. Electrochem. Soc. 158, R1-R25 (2011).   DOI
50 E. Sahraei, J. Meier, and T. Wierzbicki, "Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells," J. Power Sources, 247, 503-516 (2014).   DOI
51 S.-i. Tobishima and J.-i. Yamaki, "A consideration of lithium cell safety," J. Power Sources, 81, 882-886 (1999).   DOI
52 K. Ozawa, "Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system," SSI. 69, 212-221 (1994).
53 H. Maleki and J. N. Howard, "Internal short circuit in Li-ion cells," J. Power Sources, 191, 568-574 (2009).   DOI
54 C.-S. Kim, J.-S. Yoo, K.-M. Jeong, K. Kim, and C.-W. Yi, "Investigation on internal short circuits of lithium polymer batteries with a ceramic-coated separator during nail penetration," J. Power Sources, 289, 41-49 (2015).   DOI
55 D. P. Finegan, B. Tjaden, T. M. M. Heenan, R. Jervis, M. D. Michiel, A. Rack, G. Hinds, D. J. L. Brett, and P. R. Shearing, "Tracking internal temperature and structural dynamics during nail penetration of lithiumion cells," JES. 164, A3285-A3291 (2017).
56 A. B. K. Parasumanna, U. S. Karle, and M. R. Saraf, "Material characterization and analysis on the effect of vibration and nail penetration on lithium ion battery," WEVJ. 10, 69 (2019).
57 Z. Huang, H. Li, W. Mei, C. Zhao, J. Sun, and Q. Wang, "Thermal runaway behavior of lithium iron phosphate battery during penetration," Fire Technology, 56, 2405-2426
58 A. Perea, A. Paolella, J. Dube, D. Champagne, A. Mauger, and K. Zaghib, "State of charge influence on thermal reactions and abuse tests in commercial lithium-ion cells," J. Power Sources, 399, 392-397 (2018).   DOI
59 B. Liu, Y. Jia, C. Yuan, L. Wang, X. Gao, S. Yin, and J. Xu, "Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review," Energy Storage Materials, 24, 85-112   DOI
60 W. Zhao, G. Luo, and C.-Y. Wang, "Modeling nail penetration process in large-format li-ion cells," JES. 162, A207-A217 (2014).
61 Y. Chen, S. Santhanagopalan, V. Babu, and Y. Ding, "Dynamic mechanical behavior of lithium-ion pouch cells subjected to high-velocity impact," Composite Structures, 218, 50-59 (2019).
62 T. G. Zavalis, M. Behm, and G. Lindbergh, "Investigation of short-circuit scenarios in a lithium-ion battery cell," J. Electrochem. Soc. 159, A848-A859 (2012).   DOI
63 K.-C. Chiu, C.-H. Lin, S.-F. Yeh, Y.-H. Lin, and K.-C. Chen, "An electrochemical modeling of lithium-ion battery nail penetration," J. Power Sources, 251, 254-263 (2014).   DOI
64 P. Vyroubal and T. Kazda, "Finite element model of nail penetration into lithium ion battery," J. Energy Storage. 20, 451-458 (2018).
65 T. Yamanaka, Y. Takagishi, Y. Tozuka, and T. Yamaue, "Modeling lithium ion battery nail penetration tests and quantitative evaluation of the degree of combustion risk,"J. Power Sources, 416, 132-140 (2019).   DOI
66 J. Wang, W. Mei, Z. Cui, W. Shen, Q. Duan, Y. Jin, J. Nie, Y. Tian, Q. Wang, and J. Sun, "Experimental and numerical study on penetration-induced internal shortcircuit of lithium-ion cell," Appl. Therm. Eng. 171, 115082
67 M. Akino, T. Mihara, and K. Yamanaka, "Fatigue crack closure analysis using nonlinear ultrasound," AIP Conf. Proc. 700, 1256-1263 (2004).
68 S. K. Ramamoorthy, Y. Kane, and J. A. Turner, "Ultrasound diffusion for crack depth determination in concrete," J. Acoust. Soc. Am. 115, 523-529 (2004).   DOI
69 X. Guo and V. Vavilov, "Crack detection in aluminum parts by using ultrasound-excited infrared thermography," Infrared Physics & Technology, 61, 149-156 (2013).   DOI
70 A. Farmer, A. Collings, and G. Jameson, "Effect of ultrasound on surface cleaning of silica particles," Int. J. Miner. Process. 60, 101-113 (2000).   DOI
71 G. J. Kavarnos, R. S. Janus, and H. C. Robinson, Application of Sonochemistry, NUWC-NPT Tech. Rep., 1994.
72 S. Wang, J. Kang, X. Zhang, and Z. Guo, "Dendrites fragmentation induced by oscillating cavitation bubbles in ultrasound field," Ultrasonics, 83, 26-32 (2018).   DOI
73 K. Chatakondu, M. L. Green, M. E. Thompson, and K. S. Suslick, "The enhancement of intercalation reactions by ultrasound," J. Chem. Soc., Chem. Commun. 12, 900-901 (1987).
74 M. E. Hyde and R. G. Compton, "How ultrasound influences the electrodeposition of metals," J. Electroanal. Chem. 531, 19-24 (2002).   DOI
75 S. Wang, Z. Guo, X. Zhang, A. Zhang, and J. Kang, "On the mechanism of dendritic fragmentation by ultrasound induced cavitation," Ultrason Sonochem. 51, 160-165 (2019).   DOI
76 X. Zhou, R. Fu, D. Fu, and Y. Wang, "Ultrasound frequency-dependent microstructures of electrodeposited Ni nanocrystals for modifying mechanical properties," J. Mater. Sci. 55, 14980-15004
77 Z.-L. Cheng, Y.-C. Kong, L. Fan, and Z. Liu, Ultrasound-assisted Li+/Na+ co-intercalated exfoliation of graphite into few-layer graphene," Ultrason Sonochem. 66, 105108
78 Y. Domi, H. Usui, K. Sugimoto, and H. Sakaguchi, "Effect of silicon crystallite size on its electrochemical performance for lithium-ion batteries," Energy Technol. 7, 1800946 (2019).
79 L. Yuwen, H. Yu, X. Yang, J. Zhou, Q. Zhang, Y. Zhang, Z. Luo, S. Su, and L. Wang, "Rapid preparation of single-layer transition metal dichalcogenide nanosheets via ultrasonication enhanced lithium intercalation," Chem. Commun. 52, 529-532 (2016).   DOI
80 F. Ding, C. Zhang, and X. Hu, "Effects of ultrasound on lithium metal rechargeable battery characteristics at high charging rate," Electrochem. commun. 7, 552-556 (2005).   DOI
81 A. Huang, H. Liu, O. Manor, P. Liu, and J. Friend, "Enabling rapid charging lithium metal batteries via surface acoustic wave-driven electrolyte flow," Adv. Mater. Lett. 32, 1907516 (2020).