Browse > Article
http://dx.doi.org/10.7776/ASK.2011.30.3.158

Dependencies of Group Velocity and Attenuation Coefficient on Structural Properties in Copper and Nickel Foams with an Open-Celled Structure as Trabecular-Bone-Mimicking Phantoms  

Kim, Seong-Il (강원대학교 물리학과)
Lee, Kang-Il (강원대학교 물리학과)
Abstract
In the present study, copper and nickel foams with an open-celled structure as trabecular-bone-mimicking phantoms were used to investigate the dependencies of group velocity and attenuation coefficient on structural properties such as trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp) in trabecular bone. The group velocity and attenuation coefficient of the copper and nickel foams were measured by a through-transmission method in water, using a pair of broadband, unfocused transducers with a diameter of 12.7 mm and a center frequency of 1.0 MHz. The separation of the Biot's fast and slow waves was consistently observed in the ultrasonic signals transmitted through the copper and nickel foams. The group velocities of the copper and nickel foams showed highly positive correlations with Tb.Th and Tb.Sp. The attenuation coefficient of the copper foam showed a highly negative correlation with Tb.Th and Tb.Sp, whereas that of the nickle foam showed a highly positive correlation with Tb.Th and Tb.Sp. These results advance our understanding of those previously reported by other researchers using trabecular bone samples or phantoms.
Keywords
Osteoporosis; Trabecular-Bone-Mimicking Phantom; Bone Microarchitecture; Quantitative Ultrasound; Group Velocity; Attenuation Coefficient;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Chaffai, F. Peyrin, S. Nuzzo, R. Porcher, G. Berger, and P. laugier, "Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: Relationships to density and microstructure," Bone, vol. 30, no. 1, pp. 229-237, 2002.   DOI   ScienceOn
2 K. A. Wear, "The dependencies of phase velocity and dispersion on trabecular thickness and spacing in trabecular bonemimicking phantoms," J. Acoust. Soc. Am., vol. 118, no. 2, pp. 1186-1192, 2005.   DOI   ScienceOn
3 K. A. Wear, "Mechanisms for attenuation in cancellous bonemimicking phantoms", IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 11, pp. 2418-2424, 2008.   DOI   ScienceOn
4 K. A. Wear, "Ultrasonic attenuation in parallel-nylon-wire cancellous-bone-mimicking phantoms," J. Acoust. Soc. Am., vol. 124, no. 6, pp. 4042-4046, 2008.   DOI   ScienceOn
5 K. I. Lee and M. J. Choi, "Phase velocity and normalized broadband ultrasonic attenuation in polyacetal cuboid bonemimicking phantoms," J. Acoust. Soc. Am., vol. 121, no. 6, pp. EL263-EL269, 2007.   DOI   ScienceOn
6 M. A. Biot, "Theory of propagation of elastic waves in a fluid-saturated porous solid," J. Acoust. Soc. Am., vol. 28, no. 2, pp. 168-178, 1956.   DOI
7 E. R. Hughes, T. G. Leighton, G. W. Petley, P. R. White, R.C. Chivers, "Estimation of critical and viscous frequencies for Biot theory in cancellous bone," Ultrasonics, vol. 41, no. 5, pp. 365-368, 2003.   DOI   ScienceOn
8 A. Hosokawa and T. Otani, "Ultrasonic wave propagation in bovine cancellous bone," J. Acoust. Soc. Am., vol. 101, no. 1, pp. 558-562, 1997.   DOI   ScienceOn
9 A. Hosokawa, "Effect of porosity distribution in the propagation direction on ultrasound wave through cancellous bone," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 57, no. 6, pp. 1320-1328, 2010.   DOI   ScienceOn
10 K. Mizuno, M. Matukawa, T. Otani, M. Takada, I. Mano, and T. Tsujimoto, "Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 7, pp. 1480-1487, 2008.   DOI   ScienceOn
11 Wei Lin, Yi Xia, and Yi-Xian Qin, "Characterization of the trabecular bone structure using frequency modulated ultrasound pulse," J. Acoust. Soc. Am., vol. 125, no. 6, pp. 4071-4077, 2009.   DOI   ScienceOn
12 김성일, 최민주, 이강일, "뼈 모사체에서 다공율 및 구조에 대한 음속 및 감쇠계수의 변화," 한국음향학회지, 29권, 6호, 388-394쪽, 2010.
13 C. F. Njeh, D. Hans, T. Fuerst, C. C. Gluer, and H. K. Genant, Quantitative Ultrasound: Assessment of Osteoporosis and Bone Status, Martin Dunitz, London, 1999.
14 K. Mizuno, H. Somiya, T. Kubo, M. Matsukawa, and T. Otani, "Influence of cancellous bone microstructure on two ultrasonic wave propagatioin in bovine femur: An in vitro study," J. Acoust. Soc. Am., vol. 128, no. 5, pp. 3181-3189, 2010.   DOI   ScienceOn
15 P. H. F. Nicholson, R. Muller, X. G. Cheng, P. Ruegsegger, G. Van der perre, J. Dequeker, and S. Boonen, "Quantitative ultrasound and trabecular architecture in the human calcaneus," J. Bone Miner. Res, vol. 16, no. 10, pp. 1886-1892, 2001.   DOI   ScienceOn
16 한국산업부 기술표준원, "파인세라믹스-파인세라믹스 소결체의 밀도 및 겉보기 기공율 시험방법," KS L ISO 18754, pp. 1-11, 2007.
17 K. A. Wear, "Comparison of measurements of phase velocity in human calcaneus to Biot theory," J. Acoust. Soc. Am., vol. 117, no. 5, pp. 3319-3324, 2005.   DOI   ScienceOn
18 K. A. Wear, "Measurement of phase velocity and group velocity in human calcaneus," Ultrasound Med Biol., vol. 26, no. 4, pp. 641-646, 2000.   DOI   ScienceOn
19 김덕윤, "골밀도 측정의 올바른 임상적용," 대한골다공증학회지, 38권, 4호, 275-281쪽, 2004.
20 이강일, "해면질골에서 위상속도 및 감쇠계수 측정에 의한 구조적 특성 평가," 한국음향학회지, 28권, 7호, 661-667쪽, 2009.