Browse > Article
http://dx.doi.org/10.4489/KJM.2014.42.1.9

Distribution of Higher Fungi in Wolchulsan National Park  

Jang, Seog-Ki (Department of Environmental Landscape Architecture, College of Life Science & Natural Resource, Wonkwang University)
Publication Information
The Korean Journal of Mycology / v.42, no.1, 2014 , pp. 9-20 More about this Journal
Abstract
The result of the survey on higher fungi in the Wolchulsan National Park from April 2009 to October 2011 is as follows. During the survey, total of 1 kingdoms 2 divisions 5 classes 18 orders 56 families 133 genera and 298 species were surveyed, Basidiomycota has 12 orders 47 families 120 genera 278 species, Ascomycota 6 orders 9 families 13 genera 20 species. As for Basidiomycota, Agaricomycetes has 46 families 118 genera 276 species. The most occurred fungi were Russulaceae with 37 species, followed by Boletaceae, Amanitaceae, Agaricaceae and Polyporaceae. Various species of most higher fungi occurred during the period with average temperature of 26.0~27.9, max. 32.0~34.9, min. 24.0~25.9, and over 100 mm of precipitation.
Keywords
Climatic environment factor; Ectomycorrhizal fungi; Higher fungi; Wolchulsan National Park;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Park YW, Koo CD, Lee HY, Ryu SR, Kim TH, Cho YG. Relationship between macrofungi fruiting and environmental factors in Songnisan National Park. Kor J Environ Ecol 2010;24: 657-679.   과학기술학회마을
2 Watling R. Dawyck Botanic Garden: the Heron Wood Cryptogamic Project. Bot J Scotl 2004;56:109-118.   DOI
3 Gange AC, Gange EG, Sparks TH, Boddy L. Rapid and recent changes in fungal fruiting patterns. Science 2007;316:71.   DOI   ScienceOn
4 Kauserud H, Stige LC, Vik JO, Okland RH, Hoiland K, Stenseth NC. Mushroom fruiting and climate change. Proc Natl Acad Sci USA 2008;105:3811-3814.   DOI   ScienceOn
5 Baxter JW, Dighton J. Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host-symbiont culture conditions. New Phytol 2001;152:139-149.   DOI   ScienceOn
6 Dahlberg A. Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 2001;150: 555-562.   DOI   ScienceOn
7 Jones MD, Durall DM, Cairney JW. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 2003;157:399-422.   DOI   ScienceOn
8 Heinonsalo J, Koskiahde I, Sen R. Scots pine bait seedling performance and root colonizing ectomycorrhizal fungal community dynamics before and during the 4 years after forest clear-cut logging. Can J For Res 2007;37:415-429.   DOI   ScienceOn
9 Parrent JL, Morris WF, Vilgalys R. $CO_{2}$-enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology 2006;87:2278-2287.   DOI
10 Andrew C, Lilleskov EA. Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric $CO_{2}$ and $O_{3}$. Ecol Lett 2009;12:813-822.   DOI
11 Ishida TA, Nara K, Hogetsu T. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 2007;174:430-440.   DOI   ScienceOn
12 Lee TS. Rearrangement of Korean recorded mushrooms. Kor Soc For Environ Res; 2013.
13 Aponte C, Garcia LV, Maranon T, Gardes M. Indirect host effect on ectomycorrhizal fungi: leaf fall and litter quality explain changes in fungal communities on the roots of co-occurring Mediterranean oaks. Soil Biol Biochem 2010;42:788-796.   DOI
14 Taylor AF, Martin F, Read DJ. Fungal diversity in ectomycorrhizal communities of Norway spruce [Picea abies (L.) Karst] and beech (Fagus sylvatica L.) along north-south transects in Europe. In: Schulze ED, editor. Carbon and nitrogen cycling in European forest ecosystems-ecological studies. Berlin: Springer-Verlag; 2000. p. 343-365.
15 Dickie IA, Dentinger BTM, Avis PG, McLaughlin DJ, Reich PB. Ectomycorrhizal fungal communities of oak savanna are distinct from forest communities. Mycologia 2009;101:473-483.   DOI
16 Peay KG, Kennedy PG, Bruns TD. Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation? Fungal Ecol 2011;4: 233-240.   DOI
17 Twieg BD, Durall DM, Simard SW, Jones MD. Influence of soil nutrients on ectomycorrhizal communities in a chronosequence of mixed temperate forests. Mycorrhiza 2009;19: 305-316.   DOI
18 Kjoller R, Nilsson LO, Hansen K, Schmidt IK, Vesterdal L, Gundersen P. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient. New Phytol 2012;194:278-286.   DOI   ScienceOn
19 Peay KG, Bruns TD, Kennedy PG, Bergemann SE, Garbelotto M. A strong species-area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecol Lett 2007;10:470-480.   DOI   ScienceOn
20 Singer R. The Agaricales in modern taxonomy. 4th ed. Koenigstein: Koeltz Scientific; 1986.
21 Eriksson J, Ryvarden L. The Corticiaceae of North Europe. Vol. 3. Coronicium-Hyphoderma. Oslo: Fungiflora 1975;287-546.
22 Donk A. A conspectus of the families of Aphyllophorales, Rijksherharium, Leiden. Persoonia 1964;3:199-324.
23 Eriksson J, Hjortstam K, Ryvarden L. The Corticiaceae of North Europe. Vol. 5. Mycoaciella-Phanerochaete. Oslo: Fungiflora 1978;887-1048.
24 Eriksson J, Ryvarden L. The Corticiaceae of North Europe. Vol. 2. Aleurodiscus-Confertobasidium. Oslo: Fungiflora 1973; 59-286.
25 Eriksson J, Ryvarden L. The Corticiaceae of North Europe. Vol. 4. Hyphodermella-Mycoacia. Oslo: Fungiflora 1976;547-886.
26 Eriksson J, Hjortstam K, Ryvarden L. The Corticiaceae of North Europe. Vol. 6. Phlebia-Sarcodontia. Oslo: Fungiflora 1981;1049-1276.
27 Eriksson J, Hjortstam K, Ryvarden L. The Corticiaceae of North Europe. Vol. 7. Schizopora-Suillosporium. Oslo: Fungiflora 1984;1279-1449.
28 Gilbertson RL, Ryvarden L. North American Polypores. Vol.1. Oslo: Fungiflora 1986;1-433.
29 Gilbertson RL, Ryvarden L. North American Polypores. Vol.2. Oslo: Fungiflora 1987;437-885.
30 Park YJ. Studies on the monitoring of fungal flora in Chiaksan National Park. Kangwon Natl. University; 2003.
31 Jang SK. Distribution of higher fungi in NaeJangSan National Park. Kor J Mycol 2007;35:11-27.   DOI
32 Kim NK. Studies on the flora of soil microorganisms and higher fungi by forest types in the Odaesan National Park. Kangwon National University; 2006.
33 Jang SK, Kim SW. Relationship between higher fungi distribution and climatic factors in Naejangsan National Park. Kor J Mycol 2012;40:19-38.   과학기술학회마을   DOI   ScienceOn
34 Ohenoja E. Effect of weather conditions on the larger fungi at different forest sites in northern Finland in 1976-1988. Acta Univ Ouluensis Ser A Sci Rerum Nat 1993;243:1-69.
35 Park YJ, Sung JM, Kim YS, Seok SJ, Han SK. Studies on the monitoring of fungal flora in Chiaksan national park. Kangwon National University J Agr Life Environ Sci 2004;15:56-78.
36 Bahram M, Põlme S, Koljalg U, Zarre S, Tedersoo L. Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol 2012;193:465-473.   DOI
37 Kernaghan G. Mycorrhizal diversity: cause and effect? Pedobiologia 2005;49:511-520.   DOI   ScienceOn
38 Morris MH, Smith ME, Rizzo DM, Rejmanek M, Bledsoe CS. Contrasting ectomycorrhizal fungal communities on the roots of co-occurring oaks (Quercus spp.) in a California woodland. New Phytol 2008;178:167-76.   DOI