Browse > Article
http://dx.doi.org/10.4489/KJM.2013.41.3.192

Effect of High CO2 Concentration on Activation of Sexual Development in Aspergillus nidulans  

Han, Kap-Hoon (Department of Pharmaceutical Engineering, Woosuk University)
Yang, Yeong-Seok (Department of Pharmaceutical Engineering, Woosuk University)
Kim, Jong-Hwa (Department of Pharmaceutical Engineering, Woosuk University)
Publication Information
The Korean Journal of Mycology / v.41, no.3, 2013 , pp. 192-196 More about this Journal
Abstract
Fungal development is largely affected by many environmental factors. In a model filamentous fungus Aspergillus nidulans, asexual development is promoted by exposure of light, presence of salt and non-fermentable sugars. In other hand, sexual development is largely induced by absence of light, fermentable sugars and hypoxic condition. Also, some important genes including veA and nsdD play positive roles in activating sexual development. Here, we reported that the effect of high concentration of $CO_2$ on developmental decision in A. nidulans. When wild-type $veA^+$ strain was cultured in normal condition, sexual and asexual development occurred in balanced manner. However, high concentration of $CO_2$ (~5%) strongly activated sexual development and inhibited asexual development. Furthermore, this $CO_2$ effect was controlled by the veA or nsdD gene. High $CO_2$ culture of $veA^-$ or $nsdD^-$ mutant didn't activate sexual development, suggesting that the activation of sexual development induced by high $CO_2$ cannot overcome the genetic requirement of sexual development such as veA or nsdD. Since 5% $CO_2$ is an important condition for human pathogenic fungi for surviving and adapting in human body, this developmental pattern of A. nidulans affected by $CO_2$ concentration may provide interesting clues for comparative study with human fungal pathogens including Aspergillus fumigatus.
Keywords
Aspergillus nidulans; $CO_2$; nsdD; veA; Sexual development;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Lafon, A., Han, K. H., Seo, J. A., Yu, J. H. and d'Enfert, C. 2006. G-protein and cAMP-mediated signaling in aspergilli: a genomic perspective. Fungal Genet. Biol. 43:490-502.   DOI   ScienceOn
2 Lara-Ortz, T., Riveros-Rosas, H. and Aguirre, J. 2003. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol. Microbiol. 50:1241-1255.   DOI   ScienceOn
3 Lee, B. N. and Adams, T. H. 1994. The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev. 8:641-651.   DOI   ScienceOn
4 Marshall, M. A. and Timberlake, W. E. 1991. Aspergillus nidulans wetA activates spore-specific gene expression. Mol. Cell. Biol. 11:55-62.   DOI
5 Miller, K. Y., Wu, J. and Miller, B. L. 1992. StuA is required for cell pattern formation in Aspergillus. Genes Dev. 6:1770-1782.   DOI   ScienceOn
6 Park, H. S. and Yu, J. H. 2012. Genetic control of asexual sporulation in filamentous fungi. Curr. Opin. Microbiol. 15: 669-677.   DOI   ScienceOn
7 Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. P. and Bufton A. W. J. 1953. The genetics of Aspergillus nidulans. Adv. Genet. 5:141-238.   DOI
8 Han, K. H. 2009. Molecular genetics of Emericella nidulans sexual development. Mycobiology 37:171-182.   DOI   ScienceOn
9 Han, K. H., Chun, Y. H., Figueiredo B. C. P., Soriani, F. M., Savoldi, M., Almeida, A., Rodrigues, F., Cairns, C. T., Bignell, E., Tobal, J. M., Goldman, M. H., Kim, J. H., Bahn, Y. S., Goldman, G. H. and Ferreira, M. E. 2010. The conserved and divergent roles of carbonic anhydrases in the filamentous fungi Aspergillus fumigatus and Aspergillus nidulans. Mol. Microbiol. 75:1372-1388.   DOI   ScienceOn
10 Andrianopoulos, A. and Timberlake, W. E. 1994. The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol. Cell. Biol. 14:2503-2515.   DOI   ScienceOn
11 Bahn, Y. S., Cox, G. M., Perfect, J. R. and Heitman, J. 2005. Carbonic anhydrase and $CO_{2}$ sensing during Cryptococcus neoformans growth, differentiation, and virulence. Curr. Biol. 15:2013-2020.   DOI   ScienceOn
12 Bahn, Y. S. and Mhlschlegel, F. A. 2006. $CO_{2}$ sensing in fungi and beyond. Curr. Opin. Microbiol. 9:572-578.   DOI   ScienceOn
13 Bayram, O., Krappmann, S., Ni, M., Bok, J. W., Helmstaedt, K., Valerius, O., Braus-Stromeyer, S., Kwon, N. J., Keller, N. P., Yu, J. H. and Braus, G. H. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504-1506.   DOI   ScienceOn
14 Elleuche, S. and Pggeler, S. 2010. Carbonic anhydrases in fungi. Microbiology 156:23-29.   DOI   ScienceOn
15 Etxebeste, O., Ni, M., Garzia, A., Kwon, N. J., Fischer, R., Yu, J. H., Espeso, E. A. and Ugalde, U. 2008. Basic-zipper-type transcription factor FlbB controls asexual development in Aspergillus nidulans. Eukaryot. Cell. 7:38-48.   DOI   ScienceOn
16 Han, K. H., Lee, D. B., Kim, J. H., Kim, M. S., Han, K. Y., Kim, W. S., Park, Y. S., Kim, H. B. and Han, D. M. 2003. Environmental factors affecting development of Aspergillus nidulans. J. Microbiol. 41:34-40.
17 Kim, M. S., Ko, Y. J., Maeng, S., Floyd, A., Heitman, J. and Bahn, Y. S. 2010. Comparative transcriptome analysis of the $CO_{2}$ sensing pathway via differential expression of carbonic anhydrase in Cryptococcus neoformans. Genetics. 185:1207-1219.   DOI
18 Kwon, N. J., Garzia, A., Espeso, E. A., Ugalde, U. and Yu, J. H. 2010a. FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Mol. Microbiol. 77:1203-1219.   DOI   ScienceOn
19 Kwon, N. J., Shin, K. S. and Yu, J. H. 2010b. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genet. Biol. 47:981-993.   DOI   ScienceOn
20 Han, K. H., Han, K. Y., Yu, J. H., Chae, K. S., Jahng, K. Y. and Han, D. M. 2001. The nsdD gene encodes a putative GATAtype transcription factor necessary for sexual development of Aspergillus nidulans. Mol. Microbiol. 41:299-309.   DOI   ScienceOn
21 Hicks, J. K., Yu, J. H., Keller, N. P. and Adams, T. H. 1997. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J. 16:4916-4923.   DOI   ScienceOn
22 Adams, T. H., Boylan, M. T. and Timberlake, W. E. 1988. brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54:353-362.   DOI   ScienceOn
23 Adams, T. H., Wieser, J. K. and Yu, J. H. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62:35-54.
24 Kafer, E. 1977. Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv. Genet. 19:33-131.   DOI
25 Kim, H., Han, K., Kim, K., Han, D., Jahng, K. and Chae, K. 2002. The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet. Biol. 37:72-80.   DOI   ScienceOn
26 Kim, H. R., Chae, K. S., Han, K. H. and Han, D. M. 2009. The nsdC gene encoding a putative C2H2-type transcription factor is a key activator of sexual development in Aspergillus nidulans. Genetics. 182:771-783.   DOI   ScienceOn
27 Yu, J. H., Wieser, J. and Adams, T. H. 1996. The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J. 15:5184-5190.
28 Vienken, K., Scherer, M. and Fischer, R. 2005. The $Zn(II)_{2}Cys_{6}$ putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under lowcarbon conditions and in submersed culture. Genetics 169: 619-630.   DOI   ScienceOn
29 Yu, J. H. 2006. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J. Microbiol. 44:145-154.
30 Yu, J. H. 2010. Regulation of development in Aspergillus nidulans and Aspergillus fumigatus. Mycobiology. 38:229-237.   과학기술학회마을   DOI   ScienceOn
31 Zonneveld, B. J. M. 1977. Biochemistry and ultrastructure of sexual development of Aspergillus, pp. 59-80 In Genetics and Physiology of Aspergillus, edited by Smith, J. E. and Pateman, J. A. Academic Press, London.
32 Vienken, K. and Fischer, R. 2006. The $Zn(II)_{2}Cys_{6}$ putative transcription factor NosA controls fruiting body formation in Aspergillus nidulans. Mol. Microbiol. 61:544-554.   DOI   ScienceOn
33 Seo, J. A., Guan, Y. and Yu, J. H. 2003. Suppressor mutations bypass the requirement of fluG for asexual sporulation and sterigmatocystin production in Aspergillus nidulans. Genetics 165:1083-1093.