Browse > Article
http://dx.doi.org/10.4489/KJM.2012.40.1.019

Relationship between Higher Fungi Distribution and Climatic Factors in Naejangsan National Park  

Jang, Seog-Ki (Department of Environmental Landscape Architecture, College of Life Science & Natural Resource, Wonkwang University)
Kim, Sang-Wook (Department of Environmental Landscape Architecture, College of Life Science & Natural Resource, Wonkwang University)
Publication Information
The Korean Journal of Mycology / v.40, no.1, 2012 , pp. 19-38 More about this Journal
Abstract
This study was conducted to investigate the diversity of higher fungi and relationship between higher fungi and climatic factors in Naejangsan National Park from April 2004 to October 2010. The obtained results from investigation were as follows. The higher fungi were classified into 48 families, 158 genera and 451 species in Basidiomycotina, 13 families, 26 genera and 39 species in Ascomycotina, and 4 families, 7 genera and 7 species in Myxomycetes, and most of them belonged to Hymenomycetidae in Basidiomycotina. Dominant species belonged to Ttricholomataceae (72 species), Russulaceae (39 species), Polyporaceae (41 species), Boletaceae (40 species), Cortinariaceae (35 species) and Amamtaceae (28 species). For the habitat environment, the ectomycorrhizal mushrooms were 38.8% (15 families, 36 genera and 193 species), litter decomposing and wood rotting fungi 39.4% (36 families, 107 genera and 196 species), grounding Fungi 19.9% (24 families, 51 genera and 99 species) and others 1.8% (3 families, 4 genera and 9 species). Monthly, most of higher fungi were found in July, August and September, and least found in November. In climatic conditions, most higher fungi were occurred in $23^{\circ}C$and above of mean temperature, $20^{\circ}C$and above of minimum temperature, and $29^{\circ}C$and above of maximum temperature. most of higher fungi were found in 73% and above of relative humidity and 200 mm and above of monthly precipitation. In case of ectomycorrhizal fungi like Amamtaceae, Boletaceae and Cortinariaceae, significance levels are not high in $32^{\circ}C$ and above of maximum temperature which mostly affects species occurrence than other climatic factors of mean and minimum temperature and monthly precipitation.
Keywords
Climatic factors; Higher fungi; Naejangsan; Polyporaceae; Ttricholomataceae;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Leake, J., Johnson, D., Donnelly, D., Muckle, G., Boddy, L. and Read, D. J. 2004. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82:1016-1045.   DOI   ScienceOn
2 Markkola, A. M., Aonen-Jonnarth, U., Roitto, M., Strmmer, R. and Hyvrinen, M. 2002. Shift in ectomycorrhizal community composition in Scots pine (Pinus sylvestris L.) seedling roots as a response to nickel deposition and removal of lichen cover. Environ. Pollut. 120:797-803.   DOI
3 Natarajan, K., Senthilarasu, G., Kumaresan, V. and Rivire, T. 2005. Diversity in ectomycorrhizal fungi of a dipterocarp forest in Western Ghats. Curr. Sci. 88(12):1893-1895.
4 Rosenzweig, M. L. and Abramsky, Z. 1993. How are diversity and productivity related? In species diversity in ecological communities. pp. 52-65. Univ. of Chicago Press, Chicago, III.
5 Simard, S. W., Durall, D. and Jones, M. 2002. Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden M.G.A. Sanders IR (Eds.) Mycorrhizal Ecology. Springer. Berlin. pp. 33-74.
6 Singer, R. 1986. The agaricales in modern taxonomy, 4th ed. Koeltz Scientific books. Koenigstein.
7 Smith, S. E. and Read, D. J. 2008 Mycorrhizal Symbiosis 3 Edition London: Academic Press.
8 Taylor, A. F. S., Martin, F. and Read, D. J. 2000. Fungal diversity in ectomycorrhizal communities of Norway spruce [Picea abies (L.) Karst] and beech (Fagus sylvatica L.) along North- South transects in Europe. pp. 343-365. In: Schulze E.D., ed. Carbon and nitrogen cycling in European forest ecosystemsecological studies.
9 Twieg, B. D., Durall, D. M. and Simard, S. W. 2007. Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol. 176:437-447.   DOI   ScienceOn
10 Van der Heijden, M. G. A., Bardgett, R. D. and Van Straalen, N. M. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11:296-310.   DOI   ScienceOn
11 Anderson, I. C., Bastias, B. A., Genney, D. R., Parkin, P. I. and Cairney, J. W. G. 2007. Basidiomycete fungal communities in Australian sclerophyll forest soil are altered by repeated prescribed burning. Mycol. Res. 111:482-286.   DOI   ScienceOn
12 Avis, P. J., McLaughlin, D. J., Dentinger, B. C. and Reich, P. B. 2003. Long-term increase in nitrogen supply alters above-and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. New Phytol. 160:239-253.   DOI   ScienceOn
13 Eveling, D. W., Wilson, R. N., Gillespie, E. S. and Bataille, A. 1990. Environmental effects on basidioma counts over fourteen years in a forest area. Mycol. Res. 94:998-1002.   DOI
14 Baxter, J. W., Pickett, S. T. A., Carreiro, M. M. and Dighton, J. 1999. Ectomycorrhizal diversity and community structure in oak forest stands exposed to contrasting anthropogenic impacts. Can. J. Bot. 77:771-782.
15 Diedhiou, A. G., Dupouey, J.-L., Bue, M., Dambrine, E., Lat, L. and Garbaye, J. 2010. The functional structure of ectomycorrhizal communities in an oak forest in central France witnesses ancient Gallo-Roman farming practices. Soil Biol. Biochem. 42:860-862.   DOI   ScienceOn
16 Donk, M. 1964. A conspectus of the familes of Aphyllophorales, Rijksher-barium. Leiden.
17 Ishida, T. A., Nara, K. and Hogetsu, T. 2007. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol. 174: 430-440.   DOI   ScienceOn
18 Karen, O., Hogberg, N., Dahlberg, A., Grip, K. and Nylund, J. E. 1996. Influence of drought on ectomycorrhizal species composition- morphotype versus PCR identification. In: Azcon-Aguilar, C. and Barea, J. M. Eds. Mycorrhizas in Integrated Systems European Commission, Brussels. pp. 43-46.
19 Lange, M. 1978. Fungus flora in August. Ten year observation in a Danish beech wood districts. Bot. Tidsskr. 73:21-54.
20 김길중. 2004. 인천광역시 서구 철마산의 고등균류상 조사연구. 인천대학교. p. 45.
21 김남규. 2006. 오대산 국립공원내 임상별 토양미생물 및 고등 균류상에 대한 연구. 강원대학교. p 81.
22 김태영. 2006. 인천시 청량산의 고등균류상 조사 연구. 단국대학교. p. 38.
23 박영준. 2003. 치악산국립공원에서 발생하는 고등균류의 모니터링에 관한 연구. 강원대학교. p. 150.
24 이태수.이지열. 2000. 한국기록종 버섯 재정리목록. 임업연구원. p. 87.
25 장석기. 2007. 내장산국립공원의 고등균류 분포, 한국균학회지 35(1):11-27.   과학기술학회마을   DOI   ScienceOn
26 조덕현. 민준. 2005. 서울 남산의 균류 다양성과 균류자원. 한국자연보존연구지 3(1):111-141.