Browse > Article
http://dx.doi.org/10.4489/KJM.2008.36.2.138

Development of PCR Primers for Specific Identification and Detection of Botrytis cinerea on Tomato  

Song, Jeong-Young (Dept. of Agricultural Biology, Chungnam National University)
Lim, Jin-Ha (Dept. of Agricultural Biology, Chungnam National University)
Nam, Myeong-Hyeon (Nonsan Strawberry Experiment Station, Chungnam ARES)
Kim, Hong-Gi (Dept. of Agricultural Biology, Chungnam National University)
Kim, Byung-Sup (Dept. of Plant Science, Kangnung National University)
Publication Information
The Korean Journal of Mycology / v.36, no.2, 2008 , pp. 138-143 More about this Journal
Abstract
Botrytis cinerea, gray mold pathogen, causes serious losses in greenhouse tomato crop. In this study, a primer set was developed for identification and specific PCR detection of B. cinerea from tomato plants. The primer pair (BTF1/BTR1) was designed from polymorphic sequence region in pyruvate carboxylase gene (pyc) of B. cinerea. A PCR product (112 bp) was amplified on genomic DNA of 13 B. cinerea isolates from 10 different host plants, but not on those from 6 other Botrytis spp., 4 Botryotinia spp., 5 Sclerotinia spp. and 16 other genus of phytopathogenic fungi. The sensitivity limit of the primer set was 2 pg of genomic DNA of B. cinerea, approximately. The PCR assay using species-specific primer set was specifically able to detect the pathogen on naturally infected tomato plants and artificially infected plants. These results suggest that the sensitivity and specificity of this primer set can be applied in a rapid and accurate diagnosis of tomato disease caused by B. cinerea.
Keywords
Botrytis cinerea; Pyruvate carboxylase gene; Species-specific primer; Tomato;
Citations & Related Records
연도 인용수 순위
  • Reference
1 김병섭, 박은우, 노성환, 조광연. 1997. 잿빛곰팡이병균(Botrytis cinerea) 형태형 간의 생리적 다양성. 한국균학회지 25:320-329
2 Chilvers, M. I., du Toit, L. J., Akamatsu, H. and Peever, T. L. 2007. A real-time, quantitative PCR seed assay for Botrytis spp. that cause neck rot of onion. Plant Dis. 91:599-608   DOI   ScienceOn
3 Coley-Smith, J. R., Verhoeff, K. and Jarvis, W. R. 1981. The Biology of Botrytis, edited by Academic Press, London, New York
4 Droby, A. and Lichter, A. 2004. Post-harvest Botrytis infection: etiology, development and management. In: Botrytis: Biology, Pathology and Control. (Elad, Y., Williamson, B., Tudzynski, P. and Delen, N., eds), pp. 349-367. Dordrecht, The Netherlands: Kluwer Academic Press
5 Gachon, C. and Saindrenan, P. 2004. Real-time PCR monitoring of fungal development in Arabidopsis thaliana infected by Alternaria brassicicola and Botrytis cinerea. Plant Physiol. Biochem. 42:367-371   DOI   ScienceOn
6 Jitrapakdee, S. and Wallace, J. C. 1999. Structure, function and regulation of pyruvate carboxylase. Biochem. J. 340:1-16   DOI
7 Minerdi, D., Moretti, M., Li., Y., Gaggero, L., Garibaldi, A. and Gullino, M. L. 2008. Conventional PCR and real time quantitative PCR detection of Phytophthora cryptogea on Gerbera jamesonii. Eur. J. Plant Pathol. 122:227-237   DOI
8 Rigotti, S., Gindro, K., Richter, H. and Viret, O. 2002. Characterization for molecular markers for specific and sensitive detection of Botrytis cinerea Pers.: Fr. In strawberry (Fragaria x ananassa) using PCR. FEMS Microbiol. 209:169-174
9 Chastagner, G. A. and Ogawa, J. M. 1979. A fungicide-wax treatment to suppress Botrytis cinerea and protect fresh-market tomatoes. Phytopathology 69:59-63   DOI
10 Williamson, B., Tudzynski, P., Van, K. and Jan, A. L. 2007. Botrytis cinerea: the cause of grey mold disease. Mol. Plant Pathol. 8:561-580   DOI   ScienceOn
11 Suarez, M. B., Walsh, K., Boonham, N., O'Neill, T., Pearson, S. and Barker, I. 2005. Development of real-time PCR (Taq-Man(R)) assays for the detection and quantification of Botrytis cinerea in planta. Plant Physiol. Biochem. 43:890-899   DOI   ScienceOn