Browse > Article
http://dx.doi.org/10.4489/KJM.2004.32.2.112

Characterization of Laccase Purified from Korean Trametes hirsuta S1  

Lim, Hyung-Seon (Division of Life Sciences, Soonchunhyang University)
Yoon, Kyung-Ha (Division of Life Sciences, Soonchunhyang University)
Publication Information
The Korean Journal of Mycology / v.32, no.2, 2004 , pp. 112-118 More about this Journal
Abstract
Laccase produced by Trametes hirsuta S1 isolated from Korea was partially purified and characterized using ultrafiltration, anion exchange chromatography and affinity chromatography. The laccase was produced as the predominant extracellular enzyme during primary metabolism. Neither lignin peroxidase nor veratryl alcohol oxidase (VAO) were detected in the culture fluid. Addition of 2,5-xylidine enhanced 4-fold laccase production. Purified laccase was a single polypeptide having a molecular mass of approximately 66 kDa, as determined by SDS-polyacrylamide gel electrophoresis, and carbohydrate content of 12%. $K_{m}\;and\;V_{max}$ values for laccase with ABTS [2,2-azinobis (3-ethylbenzthiazoline 6-sulfonic acid)] as a substrate (Lineweaver-Burk plot) was determined to $51.2\;{\mu}M\;and\;56.8\;{\mu}mole$, respectively. The optimal pH for laccase activity was found to be 3.0. The enzyme was very stable for 1 hour at $50^{\circ}C$. Half-life ($t_{1/2}$) of the enzyme was about 20 min at $70^{\circ}C$. Spectroscopic analysis of purified enzyme indicated that the enzyme was typical of copper-containing protein. Substrate specificity and inhibitor studies for laccase also indicated to be a typical fungal laccase. The N-terminal amino acid sequence of the T. hirsuta S1 laccase showed 100% of homology to those of laccase from C. hirsutus.
Keywords
Laccase; Manganese-dependent peroxidase; Phenoloxidase; Trametes hirsuta;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bollag, J. M. and Leonowicz, A. 1984. Comparative studies of extracellular fungal laccase. Appl. Environ. Microbiol. 48: 849- 854.
2 Bourbonnais, R. and Paice, M. G. 1990. Oxidation of non-phenolic substrates. An expended role for laccase in lignin biodegradation. FEBS Lett. 167: 99-102.
3 Bourbonnais, R. and Paice, M. G. 1992. Demethylation and delignification of kraft pulp by Tramates versicolor laccase in lignin biodegradation. Appl. Microbiol. Biotechnol. 36: 823-827.
4 Bourbonnais, R., Paice, M. G., Reid, I. A., Lanthier, P. and Yaguchi, M. 1995. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis(3- ethylbenzthiazolin-6-sulfonate) in kraft lignin depolymerization. Appl. Environ. Microhiol. 61: 1876-1880.
5 Eggert, C., Temp, U. and Eriksson, K. E. L, 1996b. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus : purification and characterization of the laccase. Appl. Environ. Microbiol. 62: 1151-1158.
6 Field, J. A., De Jong, E., Feijoo-Costa, G. and De Bont, J. A. M. 1993. Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol. 11: 44-49.   DOI   ScienceOn
7 Guillen, F., Martinez, A. T. and Martinez, M. J. 1990. Production of hydrogen peroxide aryalcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Appl. Microbiol. 32: 465-469.
8 Camarero, S., Sarkar, S., Ruiz-Duenas, F. J., Martinez, M. J. and Martinez, A. T. 1999. Description of a versatile peroxidase involved in natural degradation of lignin that has both Mn-peroxidase and lignin-peroxidase substrate binding sites. J. Biol. Chem. 274: 10324-10330.   DOI   ScienceOn
9 Kojima, Y., Tsukuda, Y., Kawai, Y., Tsukamoto, A., Sugiura, J., Sakaino, M. and Kita, Y. 1990. Cloning, sequence analysis, and expression of lignolytic phenoloxidase gene of the white-rot basidiomycete Coriolus hirsutus. J. Bacteriol. 265: 15224-15230.
10 Laemmli, U. K. 1970. Cleavage of the structural protein during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   ScienceOn
11 Cleland, W. W. 1967. Enzyme kinetic. Ann. Rev. Biochem. 36: 77- 122.   DOI   ScienceOn
12 Coll, P. M., Fernandez-Abalos, J. M., Villanueva, J. R., Santamaria, R. and Perez, P. 1993. Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971). Appl. Environ. Microbiol. 59: 2607-2613.
13 Schoemaker, H. E. 1990. On the chemistry of lignin degradation. Rec. Travaux Chim. Pays-bas. 109: 255-272.
14 Collins, P. J., Kotterman, M. J. J., Field, J. A. and Dobson, A. D. W. 1996. Oxidation of anthracene and benzo[a]pyrene by laccase from Tramates versicolor. Appl. Environ. Microbiol. 62: 4563-4567.
15 De Vries, O. M. H., Kooistra, W. H. C. F. and Wessels, J. G. H. 1986. Formation of an extracellular laccase by Schizophyllum commune dicaryon. J. Gen. Microbiol. 132: 2817-2826.
16 Eggert, C., Temp, U., Dean, J. F. D. and Eriksson, K. E. L. 1996a. A fungal metabolite mediates degradation of nonphenolic lignin structures and synthetic lignin by laccase. FEBS Letter. 391: 144-148.   DOI   ScienceOn
17 Srinivasan, C., D'Souza, T. M., Boominathan, K. and Reddy, C. A. 1995. Demonstration of laccase in white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl. Environ. Microbiol. 61: 4274-4277.
18 Haars, A., Chet, I. and Huttermann, A. 1981. Effect of phenolic compounds and tannin on growth and laccase activity of Fomes annosus. Eur. J. Forest Pathol. 11: 67-76.   DOI
19 Higuchi, T. 1990. Lignin biochemistry : biosynthesis and biodegradation. Wood Sci. Technol. 24: 23-63.   DOI
20 Hoshida, H., Nakao, M., Kubo, K., Hakukawa, T., Morimasa, K., Akada, R. and Nishizawa, Y. 2001. Isolation of five laccase gene sequences from the white-rot fungus Trametes sanguinea. J. Biosci. Bioeng. In press.
21 Johannes, C. and Majcherczyk, A. 2000. Natural mediators in the oxidation of polycyclic aromatic hydrocarbns by laccase mediator system. Appl. Environ. Microbiol. 66: 524-528.   DOI
22 Leontievsky, A. A., Vares, T., Lankinen, P., Shergill, J. K., Pozdnyakova, N. N., Myasoedova, N. M., Kalkkinen, N., Golovelva, L. A., Cammack, R., Thurston, C. F. and Hatakka, A. 1997. Blue and yellow laccases of ligninolytic fungi. FEMS Microbiol. Lett. 156: 9-14.   DOI   ScienceOn
23 Karhumen, E., Niku-Paavola, M.-E., Viikari, L., Haltia, T., Van Der Meer, R. A. and Duine, J. A. 1990. A novel combination of prosthetic group in a fungal laccase, PQQ and two copper atoms. FEBS Lett. 267: 6-8.   DOI   ScienceOn
24 Kersten, P. J. and Kirk, T. K. 1987. Involvement of a new enzyme, glyoxal oxidases in extracellular H2O2 production by Phanerochaete chrysosporium. Arch. Microbiol. 169: 2195-2201.
25 Kirk, T. K. and Farrell, R. L. 1987. Enzymic “Combustion” : the microbial degradation of lignin. Annu. Rev. Biochem. 41: 465-505.
26 Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-267.
27 Min, K.-L., Kim, Y.-H., Kim, Y. W., Jung, H. S. and Hah, Y. C. 2001. Characterization of a novel laccase produced by the wood-rotting group Phellinus ribis. Arch Biophem. Biophys. 392: 279-286.   DOI   ScienceOn
28 Niku-Paavola, Karhunen, M.-L., Salola, E. P. and Raunio, V. 1988. Lignolitic enzymes of the white-rot fungus Phlebia radiata. Biochem. J. 254: 877-884.
29 Niku-Paavola, Karhunen, M.-L. and Viikari, L. 2000. Enzymatic oxidation of alkens. J. Mol. Cat. B Enzymol. 10: 435-444.   DOI   ScienceOn
30 Paszczynski, A. and Crawford, R. L., 1995. Potential for bioremediation of xenobiotic compounds by the white-rot fungus P. chrysosporium. Biotechnol. prog. 111: 368-379.
31 Saparrat, M. C. N., Guillen, F., Arambarri, A. M., Martinez, A. T. and Martinez, M. J. 2002. Induction, isolation and characterization of two laccases from the white rot basidiomycete Coriolopsis rigida. Appl. Environ. Microbiol. 68: 1534-1540.   DOI
32 Sarkanen, K. V. 1971. Occuirrence, formation, structure and reaction. Pp 95-163. In Lignin. Sarkanen, K. V. and Ludwig, C. H. Eds. Wiley-Interscience. New York.
33 Sugiura, J., Sakaino, M., Kojima, Y., Tsujioka, K., Mutoh, Y., Shinohara, Y. and Koide, K. 1987. Purification and properties of phenol oxidase produced by white-rot fungi and molecular cloning of phenol oxidase gene, Pp 317-320. In International Seminar on Lignin Enzymic and Microbiol Degradation. International Symposium on Wood and Pulping Chemistry, Paris. INRA Publication, Versailles, France.
34 Tien, M. and Kirk, T. K. 1983. Lignin-degrading enzyme from the hymenomycete Phanerochate chrysosporium. Science 326: 520-523.
35 Tien, M. and Kirk, T. K. 1984. Lignin-degrading enzyme from Phanerochaete chrysosporium : purification, characterization, and catalytic properties of a unique $H_2O_2$<\TEX>-requiring oxygenase. Proc. Natl. Acad. Sci. USA 81: 2280-2284.   DOI   ScienceOn
36 Volc, J., Kubatova, E., Daniel, G. and Prikrylova, V. 1996. Only C-2 specific glouse oxidase activity is expressed in ligninolytic cultures of the white rot fungus Phanerocheate chrysosporium. Arch. Microbiol. 165: 421-424.   DOI
37 Thurston, C. F. 1994. The structure and function of fungal laccase. Microbiology 140: 19-26.   DOI
38 Barr, D. P. and Aust. S. D. 1994. Pollutant degradation by whiterot fungi. Rev. Environ. Contam. T. 138: 49-72.   DOI
39 Wood, D. A. 1980. Production, purification and properties of extracellular laccase of Agaricus birporus. J. Gen. Microbiol. 117: 327-338.
40 Yemm, E. W. and Willis, A. J. 1954. The estimation of carbohydrates in plant extracts by anthron. Bi ochem. 57: 508-514.
41 Paszczynski, A., Crawford, R. L. and Huynh, V. B., 1988. Manganese peroxidase of Phanerochaete chrysosporium : purification. Methods Enzymol. 161: 264-270.   DOI