Browse > Article
http://dx.doi.org/10.22771/nfaa.2022.27.03.08

GENERALIZED CONTRACTIONS VIA Ƶ-CONTRACTION  

Kitkuan, Duangkamon (Department of Mathematics, Faculty of Science and Technology, Rambhai Barni Rajabhat University)
Saelee, Sompob (Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University)
Publication Information
Nonlinear Functional Analysis and Applications / v.27, no.3, 2022 , pp. 587-601 More about this Journal
Abstract
In this article, we introduce the concept of contractive mapping, which is generally weak in metric spaces, and show the existence and uniqueness of the fixed point for such mapping in a metric space.
Keywords
Generalized contractions; $\mathcal{Z}$-contraction; simulation functions; ${\alpha}$-admissible;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Karapinar and B. Samet, Generalized α-ψ contractive type mappings and related fixed point theorems with applications, Abst. Appl. Anal., 2012 (2012), Article ID 793486, 17 pages.
2 F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point theorems via simulation functions, Filomat, 29(6) (2015), 1189-1194.   DOI
3 H. Lakzian, D. Gopal and W. Sintunavarat, New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations, J. Fixed Point Theory Appl., 18(2) (2022), 251-266.
4 A. Nastasi and P. Vetro, Fixed point results on metric and partial metric spaces via simulation functions, J. Nonlinear Sci. Appl., 8 (2015), 1059-1069.   DOI
5 A. Padcharoen, D. Gopal, P. Chaipunya and P. Kumam, Fixed point and periodic point results for α-type F-contractions in modular metric spaces, Fixed Point Theory Appl., 2016(1) (2016), 1-12.   DOI
6 I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, Romania, 2001.
7 P. Saipara, P. Kumam and P. Bunpatcharacharoen, Some results for generalized Suzuki type Z-contraction in θ metric spaces, Thai J. Math., (2018), 203-219.
8 B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mapping, Nonlinear Anal., 75(4) (2012 ), 2154-2165.   DOI
9 A. Padcharoen and J.K. Kim, Berinde type results via simulation functions in metric spaces, Nonlinear Funct. Anal. Appl., 25(3) (2020), 511-523.
10 O. Popescu, Some new fixed point theorems for α-Geraghty contractive type maps in metric spaces, Fixed Point Theory Appl., 2014:90 (2014).   DOI
11 I.A. Rus, Principles and Applications of the Fixed Point Theory (in Romanian), Editura Dacia, Clui-Napoca, 1979
12 P. Kumam, D. Gopal and L. Budhiyi, A new fixed point theorem under Suzuki type Z-contraction mappings, J. Math. Anal., 8(1) (2017), 113-119.
13 M.U. Ali, T. Kamram and E. Karapinar, An approach to existence of fixed points of generalized contractive multivalued mappings of integral type via admissible mapping, Abstr. Appl. Anal., 2014 (2014), Article ID 141489.
14 R.M. Bianchini and M. Grandolfi, Transformazioni di tipo contracttivo generalizzato in uno spazio metrico, Atti Acad. Naz. Lincei, VII. Ser., Rend., Cl. Sci. Fis. Mat, Nature, 45 (1968), 212-216.
15 L. Budhia, H. Aydi, A.H. Ansari and D. Gopal, Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations, Nonlinear Anal.: Model. Control, 25(4) (2020), 580-597.
16 V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Babe-Bolyai Univ. Cluj-Napoca, 3(1) (1993), 3-9.
17 V. Berinde, Iterative approximation of fixed points, Editura Efemeride, Baia Mare, Romania, 2002.
18 D. O'Regan, N. Shahzad and R.P. Agarwal, Fixed point theory for generalized contractive maps on spaces with vector-valued metrics, Fixed Point Theory and Appl., (Eds. Y.J. Cho, J.K. Kim, S. M. Kang), Vol. 6, Nova Sci. Publ., New York, 2007, 143-149.
19 A. Padcharoen, P. Kumam, P. Saipara and P. Chaipunya, Generalized Suzuki type Z-contraction in complete metric spaces, Kragujevac J. Math., 42(3) (2018), 419-430.   DOI