1 |
E. Karapinar and B. Samet, Generalized α-ψ contractive type mappings and related fixed point theorems with applications, Abst. Appl. Anal., 2012 (2012), Article ID 793486, 17 pages.
|
2 |
F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point theorems via simulation functions, Filomat, 29(6) (2015), 1189-1194.
DOI
|
3 |
H. Lakzian, D. Gopal and W. Sintunavarat, New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations, J. Fixed Point Theory Appl., 18(2) (2022), 251-266.
|
4 |
A. Nastasi and P. Vetro, Fixed point results on metric and partial metric spaces via simulation functions, J. Nonlinear Sci. Appl., 8 (2015), 1059-1069.
DOI
|
5 |
A. Padcharoen, D. Gopal, P. Chaipunya and P. Kumam, Fixed point and periodic point results for α-type F-contractions in modular metric spaces, Fixed Point Theory Appl., 2016(1) (2016), 1-12.
DOI
|
6 |
I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, Romania, 2001.
|
7 |
P. Saipara, P. Kumam and P. Bunpatcharacharoen, Some results for generalized Suzuki type Z-contraction in θ metric spaces, Thai J. Math., (2018), 203-219.
|
8 |
B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mapping, Nonlinear Anal., 75(4) (2012 ), 2154-2165.
DOI
|
9 |
A. Padcharoen and J.K. Kim, Berinde type results via simulation functions in metric spaces, Nonlinear Funct. Anal. Appl., 25(3) (2020), 511-523.
|
10 |
O. Popescu, Some new fixed point theorems for α-Geraghty contractive type maps in metric spaces, Fixed Point Theory Appl., 2014:90 (2014).
DOI
|
11 |
I.A. Rus, Principles and Applications of the Fixed Point Theory (in Romanian), Editura Dacia, Clui-Napoca, 1979
|
12 |
P. Kumam, D. Gopal and L. Budhiyi, A new fixed point theorem under Suzuki type Z-contraction mappings, J. Math. Anal., 8(1) (2017), 113-119.
|
13 |
M.U. Ali, T. Kamram and E. Karapinar, An approach to existence of fixed points of generalized contractive multivalued mappings of integral type via admissible mapping, Abstr. Appl. Anal., 2014 (2014), Article ID 141489.
|
14 |
R.M. Bianchini and M. Grandolfi, Transformazioni di tipo contracttivo generalizzato in uno spazio metrico, Atti Acad. Naz. Lincei, VII. Ser., Rend., Cl. Sci. Fis. Mat, Nature, 45 (1968), 212-216.
|
15 |
L. Budhia, H. Aydi, A.H. Ansari and D. Gopal, Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations, Nonlinear Anal.: Model. Control, 25(4) (2020), 580-597.
|
16 |
V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Babe-Bolyai Univ. Cluj-Napoca, 3(1) (1993), 3-9.
|
17 |
V. Berinde, Iterative approximation of fixed points, Editura Efemeride, Baia Mare, Romania, 2002.
|
18 |
D. O'Regan, N. Shahzad and R.P. Agarwal, Fixed point theory for generalized contractive maps on spaces with vector-valued metrics, Fixed Point Theory and Appl., (Eds. Y.J. Cho, J.K. Kim, S. M. Kang), Vol. 6, Nova Sci. Publ., New York, 2007, 143-149.
|
19 |
A. Padcharoen, P. Kumam, P. Saipara and P. Chaipunya, Generalized Suzuki type Z-contraction in complete metric spaces, Kragujevac J. Math., 42(3) (2018), 419-430.
DOI
|